Suppr超能文献

联邦学习中增强医疗系统隐私保护的方法综述

A Review of Privacy Enhancement Methods for Federated Learning in Healthcare Systems.

机构信息

School of Information Technology, King's Own Institute, Sydney, NSW 2000, Australia.

School of Engineering and Technology, Central Queensland University, Sydney, NSW 2000, Australia.

出版信息

Int J Environ Res Public Health. 2023 Aug 7;20(15):6539. doi: 10.3390/ijerph20156539.

Abstract

Federated learning (FL) provides a distributed machine learning system that enables participants to train using local data to create a shared model by eliminating the requirement of data sharing. In healthcare systems, FL allows Medical Internet of Things (MIoT) devices and electronic health records (EHRs) to be trained locally without sending patients data to the central server. This allows healthcare decisions and diagnoses based on datasets from all participants, as well as streamlining other healthcare processes. In terms of user data privacy, this technology allows collaborative training without the need of sharing the local data with the central server. However, there are privacy challenges in FL arising from the fact that the model updates are shared between the client and the server which can be used for re-generating the client's data, breaching privacy requirements of applications in domains like healthcare. In this paper, we have conducted a review of the literature to analyse the existing privacy and security enhancement methods proposed for FL in healthcare systems. It has been identified that the research in the domain focuses on seven techniques: Differential Privacy, Homomorphic Encryption, Blockchain, Hierarchical Approaches, Peer to Peer Sharing, Intelligence on the Edge Device, and Mixed, Hybrid and Miscellaneous Approaches. The strengths, limitations, and trade-offs of each technique were discussed, and the possible future for these seven privacy enhancement techniques for healthcare FL systems was identified.

摘要

联邦学习(FL)提供了一种分布式机器学习系统,允许参与者使用本地数据进行训练,通过消除数据共享的需求来创建共享模型。在医疗保健系统中,FL 允许医疗物联网(MIoT)设备和电子健康记录(EHR)在不将患者数据发送到中央服务器的情况下进行本地训练。这使得可以根据所有参与者的数据集做出医疗保健决策和诊断,并简化其他医疗保健流程。就用户数据隐私而言,这项技术允许在无需与中央服务器共享本地数据的情况下进行协作训练。然而,FL 存在隐私挑战,因为模型更新在客户端和服务器之间共享,这可能会被用于重新生成客户端的数据,从而违反医疗保健等领域应用程序的隐私要求。在本文中,我们对文献进行了回顾,以分析针对医疗保健系统中的 FL 提出的现有隐私和安全增强方法。已经确定,该领域的研究侧重于七种技术:差分隐私、同态加密、区块链、分层方法、对等共享、边缘设备上的智能以及混合、混合和混合方法。讨论了每种技术的优缺点和权衡取舍,并确定了这些七种用于医疗保健 FL 系统的隐私增强技术的未来可能。

相似文献

9
A Blockchain-Based Federated Learning Method for Smart Healthcare.基于区块链的智能医疗联邦学习方法。
Comput Intell Neurosci. 2021 Nov 24;2021:4376418. doi: 10.1155/2021/4376418. eCollection 2021.

引用本文的文献

4
Strategizing data compliance in intelligent healthcare: A four-step solution.智能医疗中的数据合规策略制定:四步解决方案。
Chin Med J (Engl). 2025 May 20;138(10):1254-1256. doi: 10.1097/CM9.0000000000003434. Epub 2025 Mar 4.
7
A data management system for precision medicine.一种用于精准医学的数据管理系统。
PLOS Digit Health. 2025 Jan 9;4(1):e0000464. doi: 10.1371/journal.pdig.0000464. eCollection 2025 Jan.

本文引用的文献

2
Dew-Cloud-Based Hierarchical Federated Learning for Intrusion Detection in IoMT.基于雾云的物联网入侵检测的分层联邦学习。
IEEE J Biomed Health Inform. 2023 Feb;27(2):722-731. doi: 10.1109/JBHI.2022.3186250. Epub 2023 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验