Suppr超能文献

On non-locally elastic Rayleigh wave.

作者信息

Kaplunov J, Prikazchikov D A, Prikazchikova L

机构信息

School of Computer Science and Mathematics, Keele University, Keele ST5 5BG, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Sep 5;380(2231):20210387. doi: 10.1098/rsta.2021.0387. Epub 2022 Jul 18.

Abstract

The Rayleigh-type wave solution within a widely used differential formulation in non-local elasticity is revisited. It is demonstrated that this wave solution does not satisfy the equations of motion for non-local stresses. A modified differential model taking into account a non-local boundary layer is developed. Correspondence of the latter model to the original integral theory with the kernel in the form of the zero-order modified Bessel function of the second kind is addressed. Asymptotic behaviour of the model is investigated, resulting in a leading-order non-local correction to the classical Rayleigh wave speed due to the effect of the boundary layer. The suitability of a continuous set-up for modelling boundary layers in the framework of non-local elasticity is analysed starting from a toy problem for a semi-infinite chain. This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 1)'.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验