Nobili Andrea, Radi Enrico
Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, via Vivarelli 10, 41125 Modena, Italy.
Centre En&Tech, Tecnopolo, p.le Europa 1, 42124 Reggio Emilia, Italy.
Philos Trans A Math Phys Eng Sci. 2022 Sep 5;380(2231):20210374. doi: 10.1098/rsta.2021.0374. Epub 2022 Jul 18.
From variational principles we develop the Hamiltonian formalism for generally anisotropic microstructured materials, in an attempt to extend the celebrated Stroh formulation. Microstructure is expressed through the indeterminate (or Mindlin-Tiersten) theory of couple-stress elasticity. The resulting canonical formalism appears in the form of a differential algebraic system of equations, which is then recast in purely differential form. This structure is due to the internal constraint that relates the micro- to the macro-rotation. The special situations of plane and antiplane deformations are also considered, and they both lead to a seven-dimensional coupled linear system of differential equations. In particular, the antiplane problem shows remarkable similarity to the theory of anisotropic plates, with which it shares the Lagrangian. Yet, unlike for plates, a classical Stroh formulation cannot be obtained, owing to the difference in the constitutive assumptions. Nonetheless, the canonical formalism brings new insight into the problem's structure and highlights important symmetry properties. This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 1)'.
从变分原理出发,我们为一般各向异性微结构材料发展了哈密顿形式体系,试图扩展著名的斯特罗赫公式。微观结构通过偶应力弹性的不确定(或明德林 - 蒂尔斯特恩)理论来表达。所得的正则形式体系以微分代数方程组的形式出现,然后被改写为纯微分形式。这种结构源于将微观旋转与宏观旋转联系起来的内部约束。还考虑了平面变形和反平面变形的特殊情况,它们都导致了一个七维耦合线性微分方程组。特别是,反平面问题与各向异性板理论有显著的相似性,它们共享拉格朗日量。然而,与板不同的是,由于本构假设的差异,无法得到经典的斯特罗赫公式。尽管如此,正则形式体系为该问题的结构带来了新的见解,并突出了重要的对称性质。本文是主题为“多尺度复杂介质和结构化超材料中的波产生与传播(第1部分)”的一部分。