Suppr超能文献

细菌 PrfH 和 RtcB 对stalled 和 damaged ribosome 的顺序救援和修复。

Sequential rescue and repair of stalled and damaged ribosome by bacterial PrfH and RtcB.

机构信息

Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China.

出版信息

Proc Natl Acad Sci U S A. 2022 Jul 19;119(29):e2202464119. doi: 10.1073/pnas.2202464119. Epub 2022 Jul 12.

Abstract

RtcB is involved in transfer RNA (tRNA) splicing in archaeal and eukaryotic organisms. However, most RtcBs are found in bacteria, whose tRNAs have no introns. Because tRNAs are the substrates of archaeal and eukaryotic RtcB, it is assumed that bacterial RtcBs are for repair of damaged tRNAs. Here, we show that a subset of bacterial RtcB, denoted RtcB2 herein, specifically repair ribosomal damage in the decoding center. To access the damage site for repair, however, the damaged 70S ribosome needs to be dismantled first, and this is accomplished by bacterial PrfH. Peptide-release assays revealed that PrfH is only active with the damaged 70S ribosome but not with the intact one. A 2.55-Å cryo-electron microscopy structure of PrfH in complex with the damaged 70S ribosome provides molecular insight into PrfH discriminating between the damaged and the intact ribosomes via specific recognition of the cleaved 3'-terminal nucleotide. RNA repair assays demonstrated that RtcB2 efficiently repairs the damaged 30S ribosomal subunit but not the damaged tRNAs. Cell-based assays showed that the RtcB2-PrfH pair reverse the damage inflicted by ribosome-specific ribotoxins in vivo. Thus, our combined biochemical, structural, and cell-based studies have uncovered a bacterial defense system specifically evolved to reverse the lethal ribosomal damage in the decoding center for cell survival.

摘要

RtcB 参与古菌和真核生物的转移 RNA(tRNA)剪接。然而,大多数 RtcB 存在于细菌中,而细菌的 tRNA 没有内含子。由于 tRNA 是古菌和真核 RtcB 的底物,因此推测细菌 RtcB 是用于修复受损的 tRNA。在这里,我们表明一组细菌 RtcB,在此表示为 RtcB2,专门修复核糖体在解码中心的损伤。然而,为了访问修复的损伤部位,需要先拆卸受损的 70S 核糖体,而这是由细菌 PrfH 完成的。肽释放实验表明,PrfH 仅在有损伤的 70S 核糖体上活跃,而不在完整的核糖体上活跃。PrfH 与受损的 70S 核糖体复合物的 2.55Å 冷冻电镜结构提供了分子洞察力,通过对切割的 3'-末端核苷酸的特异性识别,PrfH 区分受损和完整的核糖体。RNA 修复实验表明,RtcB2 有效地修复受损的 30S 核糖体亚基,但不能修复受损的 tRNA。基于细胞的实验表明,RtcB2-PrfH 对可以在体内逆转核糖体特异性核糖毒素造成的损伤。因此,我们的综合生化、结构和基于细胞的研究揭示了一种细菌防御系统,该系统专门进化用于逆转解码中心中致命的核糖体损伤,以维持细胞存活。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验