Suppr超能文献

未来增温幅度和规模:ARTMIP二级CMIP5/6实验概述

Increases in Future AR Count and Size: Overview of the ARTMIP Tier 2 CMIP5/6 Experiment.

作者信息

O'Brien T A, Wehner M F, Payne A E, Shields C A, Rutz J J, Leung L-R, Ralph F M, Collow A, Gorodetskaya I, Guan B, Lora J M, McClenny E, Nardi K M, Ramos A M, Tomé R, Sarangi C, Shearer E J, Ullrich P A, Zarzycki C, Loring B, Huang H, Inda-Díaz H A, Rhoades A M, Zhou Y

机构信息

Department of Earth and Atmospheric Sciences Indiana University Bloomington IN USA.

Climate and Ecosystem Sciences Division Lawrence Berkeley National Laboratory Berkeley CA USA.

出版信息

J Geophys Res Atmos. 2022 Mar 27;127(6):e2021JD036013. doi: 10.1029/2021JD036013. Epub 2022 Mar 21.

Abstract

The Atmospheric River (AR) Tracking Method Intercomparison Project (ARTMIP) is a community effort to systematically assess how the uncertainties from AR detectors (ARDTs) impact our scientific understanding of ARs. This study describes the ARTMIP Tier 2 experimental design and initial results using the Coupled Model Intercomparison Project (CMIP) Phases 5 and 6 multi-model ensembles. We show that AR statistics from a given ARDT in CMIP5/6 historical simulations compare remarkably well with the MERRA-2 reanalysis. In CMIP5/6 future simulations, most ARDTs project a global increase in AR frequency, counts, and sizes, especially along the western coastlines of the Pacific and Atlantic oceans. We find that the choice of ARDT is the dominant contributor to the uncertainty in projected AR frequency when compared with model choice. These results imply that new projects investigating future changes in ARs should explicitly consider ARDT uncertainty as a core part of the experimental design.

摘要

大气河流(AR)追踪方法对比项目(ARTMIP)是一项旨在系统评估AR探测器(ARDTs)的不确定性如何影响我们对ARs科学理解的社区合作努力。本研究描述了ARTMIP二级实验设计以及使用耦合模式比较计划(CMIP)第5阶段和第6阶段多模式集合的初步结果。我们表明,在CMIP5/6历史模拟中,来自给定ARDT的AR统计数据与MERRA-2再分析结果非常吻合。在CMIP5/6未来模拟中,大多数ARDT预测全球AR频率、数量和规模将增加,特别是在太平洋和大西洋的西海岸沿线。我们发现,与模型选择相比,ARDT的选择是预测AR频率不确定性的主要因素。这些结果表明,研究ARs未来变化的新项目应明确将ARDT不确定性作为实验设计的核心部分加以考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0056/9285484/2c15bc27a25d/JGRD-127-0-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验