Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, Netherlands.
Front Immunol. 2022 Jul 1;13:921272. doi: 10.3389/fimmu.2022.921272. eCollection 2022.
Autotransporters are the core component of a molecular nano-machine that delivers cargo proteins across the outer membrane of Gram-negative bacteria. Part of the type V secretion system, this large family of proteins play a central role in controlling bacterial interactions with their environment by promoting adhesion to surfaces, biofilm formation, host colonization and invasion as well as cytotoxicity and immunomodulation. As such, autotransporters are key facilitators of fitness and pathogenesis and enable co-operation or competition with other bacteria. Recent years have witnessed a dramatic increase in the number of autotransporter sequences reported and a steady rise in functional studies, which further link these proteins to multiple virulence phenotypes. In this review we provide an overview of our current knowledge on classical autotransporter proteins, the archetype of this protein superfamily. We also carry out a phylogenetic analysis of their functional domains and present a new classification system for this exquisitely diverse group of bacterial proteins. The sixteen phylogenetic divisions identified establish sensible relationships between well characterized autotransporters and inform structural and functional predictions of uncharacterized proteins, which may guide future research aimed at addressing multiple unanswered aspects in this group of therapeutically important bacterial factors.
自动转运蛋白是一种分子纳米机器的核心组成部分,可将货物蛋白输送穿过革兰氏阴性菌的外膜。作为类型 V 分泌系统的一部分,这个庞大的蛋白质家族在通过促进与表面的黏附、生物膜形成、宿主定植和入侵以及细胞毒性和免疫调节来控制细菌与环境的相互作用方面发挥着核心作用。因此,自动转运蛋白是适应度和发病机制的关键促进剂,并使它们能够与其他细菌进行合作或竞争。近年来,报道的自动转运蛋白序列数量急剧增加,功能研究也稳步上升,这进一步将这些蛋白质与多种毒力表型联系起来。在这篇综述中,我们概述了我们目前对经典自动转运蛋白(这种蛋白质超家族的原型)的了解。我们还对其功能结构域进行了系统发育分析,并为这个极其多样化的细菌蛋白群提出了一个新的分类系统。确定的 16 个系统发育分区在特征良好的自动转运蛋白之间建立了合理的关系,并为未鉴定的蛋白质提供了结构和功能预测,这可能有助于指导未来的研究,以解决这组具有治疗意义的重要细菌因子中多个未解决的方面。