Sir William Dunn School of Pathology, Oxford, United Kingdom.
Central Oxford Structural Molecular Imaging Centre, Oxford, United Kingdom.
mBio. 2021 Mar 23;12(2):e02823-20. doi: 10.1128/mBio.02823-20.
Complement, contact activation, coagulation, and fibrinolysis are serum protein cascades that need strict regulation to maintain human health. Serum glycoprotein, a C1 inhibitor (C1-INH), is a key regulator (inhibitor) of serine proteases of all the above-mentioned pathways. Recently, an autotransporter protein, virulence-associated gene 8 (Vag8), produced by the whooping cough pathogen, , was shown to bind to C1-INH and interfere with its function. Here, we present the structure of the Vag8-C1-INH complex determined using cryo-electron microscopy at a 3.6-Å resolution. The structure shows a unique mechanism of C1-INH inhibition not employed by other pathogens, where Vag8 sequesters the reactive center loop of C1-INH, preventing its interaction with the target proteases. The structure of a 10-kDa protein complex is one of the smallest to be determined using cryo-electron microscopy at high resolution. The structure reveals that C1-INH is sequestered in an inactivated state by burial of the reactive center loop in Vag8. By so doing, the bacterium is able to simultaneously perturb the many pathways regulated by C1-INH. Virulence mechanisms such as the one described here assume more importance given the emerging evidence about dysregulation of contact activation, coagulation, and fibrinolysis leading to COVID-19 pneumonia.
补体、接触激活、凝血和纤维蛋白溶解是血清蛋白级联反应,需要严格的调节以维持人体健康。血清糖蛋白,即 C1 抑制剂(C1-INH),是上述所有途径的丝氨酸蛋白酶的关键调节剂(抑制剂)。最近,百日咳病原体产生的一种自转运蛋白,即毒力相关基因 8(Vag8),被证明可以与 C1-INH 结合并干扰其功能。在这里,我们使用 cryo-electron microscopy 以 3.6-Å 的分辨率确定了 Vag8-C1-INH 复合物的结构。该结构显示了一种独特的 C1-INH 抑制机制,不同于其他病原体所采用的机制,其中 Vag8 隔离了 C1-INH 的反应中心环,阻止其与靶蛋白酶相互作用。该结构确定了使用 cryo-electron microscopy 在高分辨率下的最小 10kDa 蛋白复合物之一。该结构表明,C1-INH 通过将反应中心环埋藏在 Vag8 中而被隔离在无活性状态。通过这种方式,细菌能够同时扰乱许多受 C1-INH 调节的途径。鉴于接触激活、凝血和纤维蛋白溶解失调导致 COVID-19 肺炎的证据不断出现,像这里描述的这种毒力机制变得更加重要。