Suppr超能文献

在强耦合 regime 中抑制光致变色有机分子体系的非辐射衰变 。 需注意,“regime”常见释义为“政权;政体;管理制度”等,在这里结合语境可能是一个特定的专业术语概念,暂时不太能精准翻译为某个中文词汇,保留英文更合适。

Suppressing non-radiative decay of photochromic organic molecular systems in the strong coupling regime.

作者信息

Couto Rafael C, Kowalewski Markus

机构信息

Department of Physics, Stockholm University, Albanova University Center, SE-106 91 Stockholm, Sweden.

出版信息

Phys Chem Chem Phys. 2022 Aug 17;24(32):19199-19208. doi: 10.1039/d2cp00774f.

Abstract

The lifetimes of electronic excited states have a strong influence on the efficiency of organic solar cells. However, in some molecular systems a given excited state lifetime is reduced due to the non-radiative decay through conical intersections. Several strategies may be used to suppress this decay channel. The use of the strong light-matter coupling provided in optical nano-cavities is the focus of this paper. Here, we consider the --butyl-4,4-difluoro-4-bora-3,4-diaza--indacene molecule (--butyl-BODIPY) as a showcase of how strong and ultrastrong coupling might help in the development of organic solar cells. The --butyl-BODIPY is known for its low fluorescence yield caused by the non-radiative decay through a conical intersection. However, we show here that, by considering this system within a cavity, the strong coupling can lead to significant changes in the multidimensional landscape of the potential energy surfaces of --butyl-BODIPY, suppressing almost completely the decay of the excited state wave packet back to the ground state. By means of multi configuration electronic structure calculations and nuclear wave packet dynamics, the coupling with the cavity is analyzed in-depth to provide further insight of the interaction. By fine-tuning the cavity field strength and resonance frequency, we show that one can change the nuclear dynamics in the excited state, and control the non-radiative decay. This may lead to a faster and more efficient population transfer or the suppression of it.

摘要

电子激发态的寿命对有机太阳能电池的效率有很大影响。然而,在一些分子体系中,由于通过锥形交叉点的非辐射衰变,给定激发态的寿命会缩短。可以采用几种策略来抑制这种衰变通道。利用光学纳米腔中提供的强光 - 物质耦合是本文的重点。在这里,我们将正丁基 - 4,4 - 二氟 - 4 - 硼 - 3,4 - 二氮杂 - 茚分子(正丁基 - BODIPY)作为一个例子,来说明强耦合和超强耦合如何有助于有机太阳能电池的发展。正丁基 - BODIPY因其通过锥形交叉点的非辐射衰变导致荧光产率低而闻名。然而,我们在此表明,通过在腔内考虑这个体系,强耦合可以导致正丁基 - BODIPY势能面的多维景观发生显著变化,几乎完全抑制激发态波包向基态的衰变。通过多组态电子结构计算和核波包动力学,深入分析了与腔的耦合,以进一步了解这种相互作用。通过微调腔场强度和共振频率,我们表明可以改变激发态中的核动力学,并控制非辐射衰变。这可能导致更快、更有效的布居转移或对其进行抑制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74f2/9382694/0e12fd3ac8c5/d2cp00774f-f1.jpg

相似文献

1
Suppressing non-radiative decay of photochromic organic molecular systems in the strong coupling regime.
Phys Chem Chem Phys. 2022 Aug 17;24(32):19199-19208. doi: 10.1039/d2cp00774f.
3
Modulation of the spectroscopic property of Bodipy derivates through tuning the molecular configuration.
Photochem Photobiol Sci. 2011 Jun;10(6):1030-8. doi: 10.1039/c1pp00001b. Epub 2011 Mar 8.
4
Optical Cavity Manipulation and Nonlinear UV Molecular Spectroscopy of Conical Intersections in Pyrazine.
J Am Chem Soc. 2022 May 4;144(17):7758-7767. doi: 10.1021/jacs.2c00921. Epub 2022 Apr 11.
6
Control of Photoswitching Kinetics with Strong Light-Matter Coupling in a Cavity.
J Am Chem Soc. 2023 Sep 13;145(36):19655-19661. doi: 10.1021/jacs.3c04254. Epub 2023 Aug 29.
7
Noble-metal-free BODIPY-cobaloxime photocatalysts for visible-light-driven hydrogen production.
Phys Chem Chem Phys. 2014 Nov 21;16(43):23884-94. doi: 10.1039/c4cp03343d. Epub 2014 Oct 3.
8
Up to a Sign. The Insidious Effects of Energetically Inaccessible Conical Intersections on Unimolecular Reactions.
Acc Chem Res. 2019 Feb 19;52(2):501-509. doi: 10.1021/acs.accounts.8b00571. Epub 2019 Feb 1.
10
Solution processable diketopyrrolopyrrole (DPP) cored small molecules with BODIPY end groups as novel donors for organic solar cells.
Beilstein J Org Chem. 2014 Nov 18;10:2683-95. doi: 10.3762/bjoc.10.283. eCollection 2014.

引用本文的文献

2
Unraveling a Cavity-Induced Molecular Polarization Mechanism from Collective Vibrational Strong Coupling.
J Phys Chem Lett. 2024 May 16;15(19):5208-5214. doi: 10.1021/acs.jpclett.4c00913. Epub 2024 May 8.
3
Ab Initio Vibro-Polaritonic Spectra in Strongly Coupled Cavity-Molecule Systems.
J Chem Theory Comput. 2023 Dec 26;19(24):9278-9289. doi: 10.1021/acs.jctc.3c01135. Epub 2023 Dec 12.
4
Cavity-Modified Chemiluminescent Reaction of Dioxetane.
J Phys Chem A. 2023 Nov 16;127(45):9483-9494. doi: 10.1021/acs.jpca.3c05664. Epub 2023 Oct 16.
5
Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics.
Chem Rev. 2023 Oct 11;123(19):11191-11229. doi: 10.1021/acs.chemrev.2c00788. Epub 2023 Sep 20.
6
The Rise and Current Status of Polaritonic Photochemistry and Photophysics.
Chem Rev. 2023 Sep 27;123(18):10877-10919. doi: 10.1021/acs.chemrev.2c00895. Epub 2023 Sep 8.
7
Cavity Born-Oppenheimer Hartree-Fock Ansatz: Light-Matter Properties of Strongly Coupled Molecular Ensembles.
J Phys Chem Lett. 2023 Sep 14;14(36):8024-8033. doi: 10.1021/acs.jpclett.3c01842. Epub 2023 Aug 31.
8
Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics.
Chem Rev. 2023 Aug 23;123(16):9786-9879. doi: 10.1021/acs.chemrev.2c00855. Epub 2023 Aug 8.
9
The role of dephasing for dark state coupling in a molecular Tavis-Cummings model.
J Chem Phys. 2023 Jul 28;159(4). doi: 10.1063/5.0155302.
10
Nonadiabatic Wave Packet Dynamics with Ab Initio Cavity-Born-Oppenheimer Potential Energy Surfaces.
J Chem Theory Comput. 2023 Jan 10;19(2):460-71. doi: 10.1021/acs.jctc.2c01154.

本文引用的文献

1
Manipulating nonadiabatic conical intersection dynamics by optical cavities.
Chem Sci. 2019 Dec 12;11(5):1290-1298. doi: 10.1039/c9sc04992d.
2
Controlling the Photostability of Pyrrole with Optical Nanocavities.
J Phys Chem A. 2021 Feb 11;125(5):1142-1151. doi: 10.1021/acs.jpca.0c09252. Epub 2021 Jan 19.
3
Molecular photodissociation enabled by ultrafast plasmon decay.
J Chem Phys. 2021 Jan 7;154(1):014303. doi: 10.1063/5.0037856.
4
Simulating photodissociation reactions in bad cavities with the Lindblad equation.
J Chem Phys. 2020 Dec 21;153(23):234304. doi: 10.1063/5.0033773.
5
Role of Cavity Losses on Nonadiabatic Couplings and Dynamics in Polaritonic Chemistry.
J Phys Chem Lett. 2020 Nov 5;11(21):9063-9069. doi: 10.1021/acs.jpclett.0c02406. Epub 2020 Oct 12.
6
Photoprotecting Uracil by Coupling with Lossy Nanocavities.
J Phys Chem Lett. 2020 Oct 15;11(20):8810-8818. doi: 10.1021/acs.jpclett.0c02236. Epub 2020 Oct 1.
7
Entropic Mixing Allows Monomeric-Like Absorption in Neat BODIPY Films.
Chemistry. 2020 Nov 11;26(63):14295-14299. doi: 10.1002/chem.202002463. Epub 2020 Oct 1.
8
Dynamics and spectroscopy of molecular ensembles in a lossy microcavity.
J Chem Phys. 2020 Jul 28;153(4):044108. doi: 10.1063/5.0011556.
9
Photochemistry in the strong coupling regime: A trajectory surface hopping scheme.
J Comput Chem. 2020 Sep 5;41(23):2033-2044. doi: 10.1002/jcc.26369. Epub 2020 Jul 1.
10
Polariton-Mediated Electron Transfer via Cavity Quantum Electrodynamics.
J Phys Chem B. 2020 Jul 23;124(29):6321-6340. doi: 10.1021/acs.jpcb.0c03227. Epub 2020 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验