Suppr超能文献

通过与损耗纳米腔耦合来保护尿嘧啶。

Photoprotecting Uracil by Coupling with Lossy Nanocavities.

机构信息

Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Milano, Italy.

Departamento de Fı́sica Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, Madrid, Spain.

出版信息

J Phys Chem Lett. 2020 Oct 15;11(20):8810-8818. doi: 10.1021/acs.jpclett.0c02236. Epub 2020 Oct 1.

Abstract

We analyze how the photorelaxation dynamics of a molecule can be controlled by modifying its electromagnetic environment using a nanocavity mode. In particular, we consider the photorelaxation of the RNA nucleobase uracil, which is the natural mechanism to prevent photodamage. In our theoretical work, we identify the operative conditions in which strong coupling with the cavity mode can open an efficient photoprotective channel, resulting in a relaxation dynamics twice as fast as the natural one. We rely on a state-of-the-art chemically detailed molecular model and a non-Hermitian Hamiltonian propagation approach to perform full-quantum simulations of the system dissipative dynamics. By focusing on the photon decay, our analysis unveils the active role played by cavity-induced dissipative processes in modifying chemical reaction rates, in the context of molecular polaritonics. Remarkably, we find that the photorelaxation efficiency is maximized when an optimal trade-off between light-matter coupling strength and photon decay rate is satisfied. This result is in contrast with the common intuition that increasing the quality factor of nanocavities and plasmonic devices improves their performance. Finally, we use a detailed model of a metal nanoparticle to show that the speedup of the uracil relaxation could be observed via coupling with a nanosphere pseudomode, without requiring the implementation of complex nanophotonic structures.

摘要

我们分析了如何通过修饰分子的电磁环境来控制其光致松弛动力学,使用纳米腔模式。具体来说,我们考虑了 RNA 碱基尿嘧啶的光致松弛,这是防止光损伤的自然机制。在我们的理论工作中,我们确定了与腔模式强耦合可以打开有效光保护通道的操作条件,从而导致松弛动力学比自然动力学快两倍。我们依赖于最先进的化学细节分子模型和非厄米哈密顿量传播方法来对系统耗散动力学进行全量子模拟。通过关注光子衰减,我们的分析揭示了腔诱导耗散过程在改变化学反应速率方面所起的积极作用,这是分子极化激元学的背景。值得注意的是,我们发现当光物质耦合强度和光子衰减率之间达到最佳折衷时,光致松弛效率达到最大值。这一结果与增加纳米腔和等离子体器件的品质因数可以提高其性能的常见直觉相矛盾。最后,我们使用金属纳米粒子的详细模型表明,通过与纳米球赝模耦合,可以观察到尿嘧啶松弛的加速,而不需要实现复杂的纳米光子结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c81e/7569670/9fa428f7ba0b/jz0c02236_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验