Ruggenthaler Michael, Sidler Dominik, Rubio Angel
Max-Planck-Institut für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany.
The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany.
Chem Rev. 2023 Oct 11;123(19):11191-11229. doi: 10.1021/acs.chemrev.2c00788. Epub 2023 Sep 20.
In this review, we present the theoretical foundations and first-principles frameworks to describe quantum matter within quantum electrodynamics (QED) in the low-energy regime, with a focus on polaritonic chemistry. By starting from fundamental physical and mathematical principles, we first review in great detail ab initio nonrelativistic QED. The resulting Pauli-Fierz quantum field theory serves as a cornerstone for the development of (in principle exact but in practice) approximate computational methods such as quantum-electrodynamical density functional theory, QED coupled cluster, or cavity Born-Oppenheimer molecular dynamics. These methods treat light and matter on equal footing and, at the same time, have the same level of accuracy and reliability as established methods of computational chemistry and electronic structure theory. After an overview of the key ideas behind those ab initio QED methods, we highlight their benefits for understanding photon-induced changes of chemical properties and reactions. Based on results obtained by ab initio QED methods, we identify open theoretical questions and how a so far missing detailed understanding of polaritonic chemistry can be established. We finally give an outlook on future directions within polaritonic chemistry and first-principles QED.
在这篇综述中,我们介绍了在低能区描述量子电动力学(QED)中量子物质的理论基础和第一性原理框架,重点是极化子化学。从基本的物理和数学原理出发,我们首先详细回顾了从头算非相对论量子电动力学。由此产生的泡利 - 费里茨量子场论是(原则上精确但实际上)近似计算方法发展的基石,如量子电动力学密度泛函理论、QED耦合簇或腔玻恩 - 奥本海默分子动力学。这些方法平等地处理光和物质,同时具有与计算化学和电子结构理论的既定方法相同的精度和可靠性。在概述了那些从头算QED方法背后的关键思想之后,我们强调了它们对于理解光子诱导的化学性质变化和反应的益处。基于从头算QED方法获得的结果,我们确定了开放的理论问题以及如何建立迄今缺失的对极化子化学的详细理解。我们最后展望了极化子化学和第一性原理QED的未来方向。