Department of Soil and Crop Sciences, Colorado State Universitygrid.47894.36, Fort Collins, Colorado, USA.
Biological Sciences Division, Pacific Northwest National Laboratorygrid.451303.0, Richland, Washington, USA.
mSystems. 2022 Aug 30;7(4):e0051622. doi: 10.1128/msystems.00516-22. Epub 2022 Jul 21.
Rivers have a significant role in global carbon and nitrogen cycles, serving as a nexus for nutrient transport between terrestrial and marine ecosystems. Although rivers have a small global surface area, they contribute substantially to worldwide greenhouse gas emissions through microbially mediated processes within the river hyporheic zone. Despite this importance, research linking microbial and viral communities to specific biogeochemical reactions is still nascent in these sediment environments. To survey the metabolic potential and gene expression underpinning carbon and nitrogen biogeochemical cycling in river sediments, we collected an integrated data set of 33 metagenomes, metaproteomes, and paired metabolomes. We reconstructed over 500 microbial metagenome-assembled genomes (MAGs), which we dereplicated into 55 unique, nearly complete medium- and high-quality MAGs spanning 12 bacterial and archaeal phyla. We also reconstructed 2,482 viral genomic contigs, which were dereplicated into 111 viral MAGs (vMAGs) of >10 kb in size. As a result of integrating gene expression data with geochemical and metabolite data, we created a conceptual model that uncovered new roles for microorganisms in organic matter decomposition, carbon sequestration, nitrogen mineralization, nitrification, and denitrification. We show how these metabolic pathways, integrated through shared resource pools of ammonium, carbon dioxide, and inorganic nitrogen, could ultimately contribute to carbon dioxide and nitrous oxide fluxes from hyporheic sediments. Further, by linking viral MAGs to these active microbial hosts, we provide some of the first insights into viral modulation of river sediment carbon and nitrogen cycling. Here we created HUM-V (yporheic ncultured icrobial and iral), an annotated microbial and viral MAG catalog that captures strain and functional diversity encoded in these Columbia River sediment samples. Demonstrating its utility, this genomic inventory encompasses multiple representatives of dominant microbial and archaeal phyla reported in other river sediments and provides novel viral MAGs that can putatively infect these. Furthermore, we used HUM-V to recruit gene expression data to decipher the functional activities of these MAGs and reconstruct their active roles in Columbia River sediment biogeochemical cycling. Ultimately, we show the power of MAG-resolved multi-omics to uncover interactions and chemical handoffs in river sediments that shape an intertwined carbon and nitrogen metabolic network. The accessible microbial and viral MAGs in HUM-V will serve as a community resource to further advance more untargeted, activity-based measurements in these, and related, freshwater terrestrial-aquatic ecosystems.
河流在全球碳氮循环中具有重要作用,是陆地和海洋生态系统之间养分输送的纽带。尽管河流在全球表面面积中所占比例较小,但它们通过河流潜流带中的微生物介导过程,对全球温室气体排放做出了重要贡献。尽管如此,将微生物和病毒群落与特定的生物地球化学反应联系起来的研究在这些沉积物环境中仍然处于起步阶段。为了调查河流沉积物中碳氮生物地球化学循环的代谢潜力和基因表达,我们收集了 33 个宏基因组、宏蛋白质组和配对代谢组的综合数据集。我们重建了超过 500 个微生物宏基因组组装基因组(MAG),将其去冗余为 55 个独特的、近乎完整的中高质量 MAG,涵盖了 12 个细菌和古菌门。我们还重建了 2482 个病毒基因组片段,将其去冗余为 111 个大小超过 10kb 的病毒 MAG(vMAG)。通过将基因表达数据与地球化学和代谢物数据整合,我们创建了一个概念模型,揭示了微生物在有机质分解、碳固存、氮矿化、硝化和反硝化中的新作用。我们展示了这些代谢途径如何通过氨、二氧化碳和无机氮的共享资源库整合,最终有助于潜流沉积物中二氧化碳和氧化亚氮通量的产生。此外,通过将病毒 MAG 与这些活跃的微生物宿主联系起来,我们首次提供了有关病毒对河流沉积物碳氮循环调节的见解。在这里,我们创建了 HUM-V(潜流未培养的微生物和病毒),这是一个注释的微生物和病毒 MAG 目录,捕获了哥伦比亚河沉积物样本中编码的菌株和功能多样性。该目录展示了其应用的潜力,其中包含了其他河流沉积物中报道的多个优势微生物和古菌门的代表,并且提供了可能感染这些门的新病毒 MAG。此外,我们使用 HUM-V 来招募基因表达数据,以破译这些 MAG 的功能活性,并重建它们在哥伦比亚河沉积物生物地球化学循环中的活跃作用。最终,我们展示了 MAG 解析的多组学在揭示塑造相互交织的碳氮代谢网络的河流沉积物相互作用和化学转移方面的强大功能。HUM-V 中可访问的微生物和病毒 MAG 将作为一个社区资源,以进一步推进这些和相关淡水陆地-水生生态系统中更多无目标、基于活性的测量。