Ren Ze, Luo Wei, Li Huirong, Ding Haitao, Zhang Yunlin
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
University of Chinese Academy of Sciences (UCASNJ), Nanjing 211135, China.
ISME Commun. 2025 Jan 10;5(1):ycaf003. doi: 10.1093/ismeco/ycaf003. eCollection 2025 Jan.
Antarctic snow harbors diverse microorganisms, including pigmented algae and bacteria, which create colored snow patches and influence global climate and biogeochemical cycles. However, the genomic diversity and metabolic potential of colored snow remain poorly understood. We conducted a genome-resolved study of microbiomes in colored snow from 13 patches (7 green and 6 red) on the Fildes Peninsula, Antarctica. Using metagenome assembly and binning, we reconstructed 223 metagenome-assembled genomes (MAGs), with 91% representing previously unexplored microbes. Green snow (GS) and red snow (RS) showed distinct MAGs profile, with and as the most abundant genera, respectively. GS exhibited higher alpha diversity with more unique and enriched MAGs, while RS showed greater variability with higher beta diversity. All MAGs contained genes encoding auxiliary activities (AAs), carbohydrate esterases (CEs), glycoside hydrolases (GHs), and glycosyl transferases (GTs), indicating microbial degradation of complex carbon substrates. The most abundant enzymes included GT2 (cellulose synthase), GT4 (sucrose synthase), CE1 (acetyl xylan esterase), GT41 (peptide beta-N-acetylglucosaminyltransferase), and CE10 (arylesterase). GS had a higher abundance of GTs, whereas RS was enriched in GHs. Furthermore, 56% of MAGs contained genes for inorganic nitrogen cycling, with 18 gene families involved in assimilatory nitrate reduction, dissimilatory nitrate reduction, and denitrification. Potential coupling of nitrogen cycling and carbohydrate metabolism was observed at both genome and community levels, suggesting close links between these pathways, particularly through nitrate reduction during carbohydrate degradation. This study enhances our understanding of microbial metabolic functions in polar ecosystems and highlights their roles in maintaining Antarctic ecological stability.
南极的雪蕴藏着多样的微生物,包括有色素的藻类和细菌,它们形成了彩色雪斑,并影响全球气候和生物地球化学循环。然而,彩色雪的基因组多样性和代谢潜力仍知之甚少。我们对南极菲尔德斯半岛13个雪斑(7个绿色和6个红色)中的微生物群落进行了基因组解析研究。通过宏基因组组装和分箱,我们重建了223个宏基因组组装基因组(MAG),其中91%代表以前未被探索的微生物。绿色雪(GS)和红色雪(RS)显示出不同的MAG图谱, 和 分别是最丰富的属。GS表现出更高的α多样性,有更多独特和丰富的MAG,而RS表现出更大的变异性和更高的β多样性。所有MAG都包含编码辅助活性(AA)、碳水化合物酯酶(CE)、糖苷水解酶(GH)和糖基转移酶(GT)的基因,表明微生物对复杂碳底物的降解。最丰富的酶包括GT2(纤维素合酶)、GT4(蔗糖合酶)、CE1(乙酰木聚糖酯酶)、GT41(肽β-N-乙酰葡糖胺基转移酶)和CE10(芳基酯酶)。GS中GT的丰度更高,而RS中GH的含量更丰富。此外,56%的MAG包含无机氮循环的基因,有18个基因家族参与同化硝酸盐还原、异化硝酸盐还原和反硝化作用。在基因组和群落水平都观察到了氮循环和碳水化合物代谢的潜在耦合,表明这些途径之间存在密切联系,特别是通过碳水化合物降解过程中的硝酸盐还原。这项研究增进了我们对极地生态系统中微生物代谢功能的理解,并突出了它们在维持南极生态稳定性中的作用。