National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
Engineering Research Center for Maize of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
Plant J. 2022 Sep;111(6):1660-1675. doi: 10.1111/tpj.15914. Epub 2022 Aug 1.
Maize (Zea mays) is an important cereal crop worldwide. However, its yield and quality are adversely affected by salt stress resulting from soil hypersalinity. Exploring the regulatory mechanisms of stress responses is of vital importance to increase maize seed production. In the present study, we screened ethyl methanesulfonate-induced maize mutants and identified a salt-tolerant mutant. A single base was mutated in ZmWRKY20, leading to the formation of a truncated protein variant. A detailed phenotypic analysis revealed that this mutant had significantly higher resistance to wilting and lower reactive oxygen species levels than the inbred line B73. ZmWRKY20 showed transcriptional activity in yeast and specifically bound W-boxes according to the results of our yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays. Overexpression of ZmWRKY20 decreased salt tolerance in maize. Transcriptome profiling revealed that ZmWRKY20 overexpression extensively reprogrammed genes involved in regulating defense and oxidation-reduction responses. The results substantiate that ZmWRKY20 is directly targeted to the basic leucine zipper (bZIP) motif in the transcription factor ZmbZIP111. It was also verified that ZmWRKY20 interacts with ZmWRKY115 and both proteins act jointly to enhance ZmbZIP111 repression. The results indicate that the ZmWRKY20 and ZmWRKY115 transcription factors interact in the nucleus, leading to repression of ZmbZIP111 expression by directly binding its promoter, and increase the sensitivity of maize seedlings to salt stress. The current study improves our understanding of the complicated responses of maize to salt stress.
玉米(Zea mays)是世界范围内重要的谷类作物。然而,由于土壤盐分过高导致的盐胁迫,其产量和品质受到了负面影响。探索胁迫响应的调控机制对于提高玉米种子产量至关重要。本研究筛选了乙基磺酸甲酯诱导的玉米突变体,并鉴定出一个耐盐突变体。ZmWRKY20 中的一个单一碱基发生突变,导致形成截短的蛋白变异体。详细的表型分析表明,与自交系 B73 相比,该突变体具有更高的抗萎蔫能力和更低的活性氧水平。ZmWRKY20 在酵母中表现出转录活性,并且根据我们的酵母单杂交、电泳迁移率变动分析和双荧光素酶报告基因分析的结果,特异性结合 W 框。ZmWRKY20 的过表达降低了玉米的耐盐性。转录组分析表明,ZmWRKY20 的过表达广泛重新编程了参与调节防御和氧化还原反应的基因。结果证实,ZmWRKY20 直接靶向转录因子 ZmbZIP111 的碱性亮氨酸拉链(bZIP)基序。还验证了 ZmWRKY20 与 ZmWRKY115 相互作用,这两种蛋白共同作用增强 ZmbZIP111 的抑制作用。结果表明,ZmWRKY20 和 ZmWRKY115 转录因子在核内相互作用,通过直接结合其启动子抑制 ZmbZIP111 的表达,从而增加玉米幼苗对盐胁迫的敏感性。本研究提高了我们对玉米对盐胁迫复杂响应的理解。