文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Claudin5 以器官和血管类型特异性的方式保护外周血管内皮屏障。

Claudin5 protects the peripheral endothelial barrier in an organ and vessel-type-specific manner.

机构信息

Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.

Beijer Gene- and Neuro Laboratory and Science for Life Laboratories, Uppsala University, Uppsala, Sweden.

出版信息

Elife. 2022 Jul 21;11:e78517. doi: 10.7554/eLife.78517.


DOI:10.7554/eLife.78517
PMID:35861713
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9348850/
Abstract

Dysfunctional and leaky blood vessels resulting from disruption of the endothelial cell (EC) barrier accompanies numerous diseases. The EC barrier is established through endothelial cell tight and adherens junctions. However, the expression pattern and precise contribution of different junctional proteins to the EC barrier is poorly understood. Here, we focus on organs with continuous endothelium to identify structural and functional in vivo characteristics of the EC barrier. Assembly of multiple single-cell RNAseq datasets into a single integrated database revealed the variability and commonalities of EC barrier patterning. Across tissues, Claudin5 exhibited diminishing expression along the arteriovenous axis, correlating with EC barrier integrity. Functional analysis identified tissue-specific differences in leakage properties and response to the leakage agonist histamine. Loss of Claudin5 enhanced histamine-induced leakage in an organotypic and vessel type-specific manner in an inducible, EC-specific, knock-out mouse. Mechanistically, Claudin5 loss left junction ultrastructure unaffected but altered its composition, with concomitant loss of zonula occludens-1 and upregulation of VE-Cadherin expression. These findings uncover the organ-specific organisation of the EC barrier and distinct importance of Claudin5 in different vascular beds, providing insights to modify EC barrier stability in a targeted, organ-specific manner.

摘要

功能失调和渗漏的血管是由于内皮细胞 (EC) 屏障的破坏而产生的,伴随许多疾病。EC 屏障是通过内皮细胞紧密连接和黏附连接建立的。然而,不同连接蛋白对 EC 屏障的表达模式和精确贡献还了解甚少。在这里,我们专注于具有连续内皮的器官,以确定 EC 屏障的结构和功能的体内特征。将多个单细胞 RNAseq 数据集组装到一个单一的综合数据库中,揭示了 EC 屏障模式的可变性和共性。在所有组织中,Claudin5 的表达沿着动静脉轴逐渐减少,与 EC 屏障的完整性相关。功能分析确定了组织特异性的渗漏特性和对渗漏激动剂组胺的反应差异。Claudin5 的缺失以诱导型、EC 特异性敲除小鼠中的组织特异性和血管类型特异性方式增强了组胺诱导的渗漏。在机制上,Claudin5 的缺失不会影响连接的超微结构,但会改变其组成,同时会丢失 zonula occludens-1 并上调 VE-Cadherin 的表达。这些发现揭示了 EC 屏障的器官特异性组织,以及 Claudin5 在不同血管床中的重要性,为以靶向、器官特异性的方式修饰 EC 屏障稳定性提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/ef8948f4841c/elife-78517-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/21b34a85f238/elife-78517-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/da925a7dfb30/elife-78517-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/d7d458db4088/elife-78517-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/e4339fefcc5f/elife-78517-fig1-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/8bc34f0173d9/elife-78517-fig1-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/6746e0c99095/elife-78517-fig1-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/ac11154acb94/elife-78517-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/21d04c8171ff/elife-78517-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/f32265c80c91/elife-78517-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/94e69a884902/elife-78517-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/d53380dd1554/elife-78517-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/1673b2084543/elife-78517-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/8d3e72e47904/elife-78517-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/ef8948f4841c/elife-78517-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/21b34a85f238/elife-78517-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/da925a7dfb30/elife-78517-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/d7d458db4088/elife-78517-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/e4339fefcc5f/elife-78517-fig1-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/8bc34f0173d9/elife-78517-fig1-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/6746e0c99095/elife-78517-fig1-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/ac11154acb94/elife-78517-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/21d04c8171ff/elife-78517-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/f32265c80c91/elife-78517-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/94e69a884902/elife-78517-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/d53380dd1554/elife-78517-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/1673b2084543/elife-78517-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/8d3e72e47904/elife-78517-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c860/9348850/ef8948f4841c/elife-78517-fig5-figsupp1.jpg

相似文献

[1]
Claudin5 protects the peripheral endothelial barrier in an organ and vessel-type-specific manner.

Elife. 2022-7-21

[2]
Zika Virus NS1 Suppresses VE-Cadherin and Claudin-5 via hsa-miR-101-3p in Human Brain Microvascular Endothelial Cells.

Mol Neurobiol. 2021-12

[3]
Akt1 promotes stimuli-induced endothelial-barrier protection through FoxO-mediated tight-junction protein turnover.

Cell Mol Life Sci. 2016-10

[4]
MicroRNA Regulation of Endothelial Junction Proteins and Clinical Consequence.

Mediators Inflamm. 2016

[5]
ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation.

J Cell Biol. 2015-3-16

[6]
Hyperhomocysteinemia increases permeability of the blood-brain barrier by NMDA receptor-dependent regulation of adherens and tight junctions.

Blood. 2011-6-24

[7]
HIF2α signaling inhibits adherens junctional disruption in acute lung injury.

J Clin Invest. 2015-2

[8]
JAM-A Acts via C/EBP-α to Promote Claudin-5 Expression and Enhance Endothelial Barrier Function.

Circ Res. 2020-9-25

[9]
The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions.

Cell Tissue Res. 2014-11

[10]
miR-27a-3p regulates expression of intercellular junctions at the brain endothelium and controls the endothelial barrier permeability.

PLoS One. 2022

引用本文的文献

[1]
The vascular endothelium as decision maker in lung injury.

Front Cell Dev Biol. 2025-7-7

[2]
Adipocyte CLDN5 promotes thermogenesis and energy expenditure through regulation of IL10 expression.

Nat Commun. 2025-7-4

[3]
Aged human serum induces vascular changes in an isogenic co-culture venule model.

Stem Cell Reports. 2025-7-8

[4]
Angiopoietin-like protein 2 mediates vasculopathy-driven fibrogenesis in a mouse model of systemic sclerosis.

J Clin Invest. 2025-6-20

[5]
Intermittent Supplementation With Fisetin Improves Physical Function and Decreases Cellular Senescence in Skeletal Muscle With Aging: A Comparison to Genetic Clearance of Senescent Cells and Synthetic Senolytic Approaches.

Aging Cell. 2025-8

[6]
Single-cell transcriptomics of clinical grade adipose-derived regenerative cells reveals consistency between donors independent of gender and BMI.

Stem Cell Res Ther. 2025-3-5

[7]
Endothelial PD-1 Regulates Vascular Homeostasis and Oligodendrogenesis during Brain Development.

Adv Sci (Weinh). 2025-4

[8]
Same same but different? How blood and lymphatic vessels induce cell contact inhibition.

Biochem Soc Trans. 2025-2-6

[9]
Neuropilin-1 controls vascular permeability through juxtacrine regulation of endothelial adherens junctions.

Angiogenesis. 2024-12-12

[10]
Transcriptomic profiling of Schlemm's canal cells reveals a lymphatic-biased identity and three major cell states.

Elife. 2024-10-18

本文引用的文献

[1]
Intra-vessel heterogeneity establishes enhanced sites of macromolecular leakage downstream of laminin α5.

Cell Rep. 2021-6-22

[2]
The blood-brain and gut-vascular barriers: from the perspective of claudins.

Tissue Barriers. 2021-7-3

[3]
Single-cell transcriptome profiling reveals vascular endothelial cell heterogeneity in human skin.

Theranostics. 2021-4-19

[4]
Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies.

Trends Mol Med. 2021-4

[5]
A molecular map of murine lymph node blood vascular endothelium at single cell resolution.

Nat Commun. 2020-7-30

[6]
JAM-A Acts via C/EBP-α to Promote Claudin-5 Expression and Enhance Endothelial Barrier Function.

Circ Res. 2020-9-25

[7]
A single-cell transcriptomic atlas characterizes ageing tissues in the mouse.

Nature. 2020-7-15

[8]
Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin.

Elife. 2020-4-21

[9]
Single-Cell Transcriptome Atlas of Murine Endothelial Cells.

Cell. 2020-2-13

[10]
Exploration of Cell Development Pathways through High-Dimensional Single Cell Analysis in Trajectory Space.

iScience. 2020-2-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索