Suppr超能文献

基于图卷积网络和几何图的高维数据生存分析

Survival Analysis of High-Dimensional Data With Graph Convolutional Networks and Geometric Graphs.

作者信息

Ling Yurong, Liu Zijing, Xue Jing-Hao

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):4876-4886. doi: 10.1109/TNNLS.2022.3190321. Epub 2024 Apr 4.

Abstract

This article proposes a survival model based on graph convolutional networks (GCNs) with geometric graphs directly constructed from high-dimensional features. First, we clarify that the graphs used in GCNs play an important role in processing the relational information of samples, and the graphs that align well with the underlying data structure could be beneficial for survival analysis. Second, we show that sparse geometric graphs derived from high-dimensional data are more favorable compared with dense graphs when used in GCNs for survival analysis. Third, from this insight, we propose a model for survival analysis based on GCNs. By using multiple sparse geometric graphs and a proposed sequential forward floating selection algorithm, the new model is able to simultaneously perform survival analysis and unveil the local neighborhoods of samples. The experimental results on real-world datasets show that the proposed survival analysis approach based on GCNs outperforms a variety of existing methods and indicate that geometric graphs can aid survival analysis of high-dimensional data.

摘要

本文提出了一种基于图卷积网络(GCN)的生存模型,该模型使用从高维特征直接构建的几何图。首先,我们阐明了GCN中使用的图在处理样本的关系信息方面起着重要作用,并且与基础数据结构良好对齐的图可能有利于生存分析。其次,我们表明,在用于生存分析的GCN中,从高维数据导出的稀疏几何图比密集图更有利。第三,基于这一见解,我们提出了一种基于GCN的生存分析模型。通过使用多个稀疏几何图和一种提出的顺序前向浮动选择算法,新模型能够同时进行生存分析并揭示样本的局部邻域。在真实世界数据集上的实验结果表明,所提出的基于GCN的生存分析方法优于多种现有方法,并表明几何图可以辅助高维数据的生存分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验