Suppr超能文献

FGCNSurv:用于多组学生存预测的双重融合图卷积网络。

FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction.

机构信息

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

出版信息

Bioinformatics. 2023 Aug 1;39(8). doi: 10.1093/bioinformatics/btad472.

Abstract

MOTIVATION

Survival analysis is an important tool for modeling time-to-event data, e.g. to predict the survival time of patient after a cancer diagnosis or a certain treatment. While deep neural networks work well in standard prediction tasks, it is still unclear how to best utilize these deep models in survival analysis due to the difficulty of modeling right censored data, especially for multi-omics data. Although existing methods have shown the advantage of multi-omics integration in survival prediction, it remains challenging to extract complementary information from different omics and improve the prediction accuracy.

RESULTS

In this work, we propose a novel multi-omics deep survival prediction approach by dually fused graph convolutional network (GCN) named FGCNSurv. Our FGCNSurv is a complete generative model from multi-omics data to survival outcome of patients, including feature fusion by a factorized bilinear model, graph fusion of multiple graphs, higher-level feature extraction by GCN and survival prediction by a Cox proportional hazard model. The factorized bilinear model enables to capture cross-omics features and quantify complex relations from multi-omics data. By fusing single-omics features and the cross-omics features, and simultaneously fusing multiple graphs from different omics, GCN with the generated dually fused graph could capture higher-level features for computing the survival loss in the Cox-PH model. Comprehensive experimental results on real-world datasets with gene expression and microRNA expression data show that the proposed FGCNSurv method outperforms existing survival prediction methods, and imply its ability to extract complementary information for survival prediction from multi-omics data.

AVAILABILITY AND IMPLEMENTATION

The codes are freely available at https://github.com/LiminLi-xjtu/FGCNSurv.

摘要

动机

生存分析是一种用于建模事件时间数据的重要工具,例如预测癌症诊断或特定治疗后患者的生存时间。虽然深度神经网络在标准预测任务中表现良好,但由于对右删失数据建模的困难,特别是对于多组学数据,尚不清楚如何最好地利用这些深度模型进行生存分析。尽管现有方法已经显示了多组学整合在生存预测中的优势,但从不同的组学中提取互补信息并提高预测准确性仍然具有挑战性。

结果

在这项工作中,我们提出了一种新颖的多组学深度生存预测方法,通过双重融合图卷积网络(GCN)命名为 FGCNSurv。我们的 FGCNSurv 是一种从多组学数据到患者生存结果的完整生成模型,包括通过因子化双线性模型进行特征融合、通过多个图进行图融合、通过 GCN 进行高层特征提取以及通过 Cox 比例风险模型进行生存预测。因子化双线性模型能够捕捉跨组学特征并量化多组学数据中的复杂关系。通过融合单组学特征和跨组学特征,同时融合来自不同组学的多个图,生成的双重融合图上的 GCN 可以捕获更高层次的特征,以计算 Cox-PH 模型中的生存损失。基于真实数据集的基因表达和 microRNA 表达数据的综合实验结果表明,所提出的 FGCNSurv 方法优于现有的生存预测方法,这表明它能够从多组学数据中提取互补信息进行生存预测。

可用性和实现

代码可在 https://github.com/LiminLi-xjtu/FGCNSurv 上免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c511/10412406/8f838f33c4d1/btad472f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验