Institute for Biomedical Sciences, Georgia State Universitygrid.256304.6, Atlanta, Georgia, USA.
Department of Biochemistry, Vanderbilt Universitygrid.152326.1, Nashville, Tennessee, USA.
mBio. 2022 Aug 30;13(4):e0167022. doi: 10.1128/mbio.01670-22. Epub 2022 Jul 14.
Neisseria gonorrhoeae causes the sexually transmitted infection (STI) gonorrhea, which afflicts over 80 million people each year. No vaccine is available to prevent gonorrhea. The pathogen alters the expression and antigenic presentation of key surface molecules, making the identification of suitable vaccine targets difficult. The human host utilizes metal-binding proteins to limit free essential transition metal ions available to invading pathogens, limiting their infective potential, a process called nutritional immunity. To overcome this, N. gonorrhoeae employs outer membrane TonB-dependent transporters (TdTs) that bind host nutritional immunity proteins and strip them of their metal cargo. The TdTs are well conserved, and some play key roles in establishing infections, making them promising vaccine targets. One TdT, TdfJ, recognizes human S100A7, a zinc-binding protein that inhibits the proliferation of other pathogens via zinc sequestration. N. gonorrhoeae uses TdfJ to strip and internalize zinc from S100A7. TdfJ contains a conserved α-helix finger in extracellular loop 3; a similar α-helix in loop 3 of another gonococcal TdT, TbpA, plays a critical role in the interaction between TbpA and human transferrin. Therefore, we hypothesized that the TdfJ loop 3 helix (L3H) participates in interactions with S100A7. We determined the affinity between wild-type TdfJ and S100A7 and then generated a series of mutations in the TdfJ L3H. Our study revealed that mutagenesis of key residues within the L3H reduced S100A7 binding and zinc piracy by the gonococcus, with profound effects seen with substitutions at residues K261 and R262. Taken together, these data suggest a key role for the TdfJ L3H in subverting host metal restriction. Gonorrhea is a global threat to public health due to the increasing incidence of antimicrobial drug resistance, rising treatment costs, and lack of a protective vaccine. The prospect of untreatable gonococcal infections has spurred efforts to identify targets for novel therapeutic and prevention strategies, and members of the family of outer membrane TonB-dependent metal transporters have emerged as promising candidates. These conserved surface molecules play a critical role in establishing infection by facilitating nutrient uptake in the human host that dedicates considerable efforts to restricting nutrient availability. In this study, we characterized the binding interaction between the zinc importer TdfJ and its human zinc source, S100A7. We went on to identify a key region of TdfJ that mediates this interaction. With a more thorough understanding of the intricate relationships between these bacterial nutrient receptors and their host nutrient sources, we may help pave the way toward identifying effective prophylaxis and treatment for an important human disease.
淋病奈瑟菌引起性传播感染(STI)淋病,每年影响超过 8000 万人。目前尚无预防淋病的疫苗。病原体改变关键表面分子的表达和抗原呈递,使得合适的疫苗靶点难以识别。宿主利用金属结合蛋白来限制入侵病原体可用的游离必需过渡金属离子,从而限制其感染潜力,这一过程称为营养免疫。为了克服这一点,淋病奈瑟菌利用外膜 TonB 依赖性转运蛋白(TdT)结合宿主营养免疫蛋白并将其金属货物从它们身上剥离。TdT 高度保守,其中一些在建立感染方面发挥关键作用,使其成为有前途的疫苗靶点。一种 TdT,TdfJ,识别人类 S100A7,这是一种锌结合蛋白,通过锌螯合抑制其他病原体的增殖。淋病奈瑟菌利用 TdfJ 从 S100A7 中提取和内化锌。TdfJ 在细胞外环 3 中含有保守的α-螺旋指;另一种淋病奈瑟菌 TdT,TbpA,的细胞外环 3 中的类似α-螺旋在 TbpA 与人类转铁蛋白之间的相互作用中起着关键作用。因此,我们假设 TdfJ 环 3 螺旋(L3H)参与与 S100A7 的相互作用。我们确定了野生型 TdfJ 和 S100A7 之间的亲和力,然后在 TdfJ L3H 中生成了一系列突变。我们的研究表明,L3H 中关键残基的诱变降低了淋病奈瑟菌与 S100A7 的结合和锌劫持,在 K261 和 R262 残基的取代时看到了深远的影响。综上所述,这些数据表明 TdfJ L3H 在颠覆宿主金属限制方面发挥着关键作用。由于抗菌药物耐药性的增加、治疗费用的上升和缺乏保护性疫苗,淋病对全球公共卫生构成威胁。无法治疗的淋病感染的前景促使人们努力寻找新的治疗和预防策略的靶点,外膜 TonB 依赖性金属转运蛋白家族的成员已成为有前途的候选者。这些保守的表面分子在建立感染方面发挥着关键作用,它们促进了宿主中的营养摄取,宿主为限制营养可用性付出了巨大努力。在这项研究中,我们描述了锌摄取器 TdfJ 与其人类锌源 S100A7 之间的结合相互作用。我们接着确定了介导这种相互作用的 TdfJ 的关键区域。通过更深入地了解这些细菌营养受体与其宿主营养来源之间的复杂关系,我们可能有助于为这一重要的人类疾病确定有效的预防和治疗方法。