Suppr超能文献

基于层次解剖结构感知的胸部 CT 图像配准。

Hierarchical anatomical structure-aware based thoracic CT images registration.

机构信息

State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, 100191, China; Peng Cheng Laboratory, Shenzhen, 518055, China.

State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, 100191, China.

出版信息

Comput Biol Med. 2022 Sep;148:105876. doi: 10.1016/j.compbiomed.2022.105876. Epub 2022 Jul 14.

Abstract

Accurate thoracic CT image registration remains challenging due to complex joint deformations and different motion patterns in multiple organs/tissues during breathing. To combat this, we devise a hierarchical anatomical structure-aware based registration framework. It affords a coordination scheme necessary for constraining a general free-form deformation (FFD) during thoracic CT registration. The key is to integrate the deformations of different anatomical structures in a divide-and-conquer way. Specifically, a deformation ability-aware dissimilarity metric is proposed for complex joint deformations containing large-scale flexible deformation of the lung region, rigid displacement of the bone region, and small-scale flexible deformation of the rest region. Furthermore, a motion pattern-aware regularization is devised to handle different motion patterns, which contain sliding motion along the lung surface, almost no displacement of the spine and smooth deformation of other regions. Moreover, to accommodate large-scale deformation, a novel hierarchical strategy, wherein different anatomical structures are fused on the same control lattice, registers images from coarse to fine via elaborate Gaussian pyramids. Extensive experiments and comprehensive evaluations have been executed on the 4D-CT DIR and 3D DIR COPD datasets. It confirms that this newly proposed method is locally comparable to state-of-the-art registration methods specializing in local deformations, while guaranteeing overall accuracy. Additionally, in contrast to the current popular learning-based methods that typically require dozens of hours or more pre-training with powerful graphics cards, our method only takes an average of 63 s to register a case with an ordinary graphics card of RTX2080 SUPER, making our method still worth promoting. Our code is available at https://github.com/heluxixue/Structure_Aware_Registration/tree/master.

摘要

由于在呼吸过程中多个器官/组织的复杂关节变形和不同运动模式,准确的胸部 CT 图像配准仍然具有挑战性。为了解决这个问题,我们设计了一种分层的基于解剖结构感知的配准框架。它提供了在胸部 CT 配准过程中约束一般自由形态变形(FFD)所需的协调方案。关键是要以分而治之的方式整合不同解剖结构的变形。具体来说,提出了一种针对包含肺部区域大尺度柔性变形、骨骼区域刚性位移和其余区域小尺度柔性变形的复杂关节变形的具有变形能力感知的不相似性度量。此外,设计了一种运动模式感知正则化来处理不同的运动模式,其中包含沿肺表面的滑动运动、脊柱几乎没有位移和其他区域的平滑变形。此外,为了适应大尺度变形,采用了一种新的分层策略,其中不同的解剖结构在同一控制格点上融合,通过精心设计的高斯金字塔从粗到细进行图像配准。在 4D-CT DIR 和 3D DIR COPD 数据集上进行了广泛的实验和综合评估。结果表明,与专门针对局部变形的最新最先进的配准方法相比,该方法在局部上具有可比性,同时保证了整体准确性。此外,与当前流行的基于学习的方法相比,这些方法通常需要数十个小时或更多的时间在具有强大图形卡的机器上进行预训练,而我们的方法仅需平均 63 秒即可在配备普通 RTX2080 SUPER 图形卡的机器上注册一个病例,因此我们的方法仍然值得推广。我们的代码可在 https://github.com/heluxixue/Structure_Aware_Registration/tree/master 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验