Suppr超能文献

基于强度的可变形图像配准的二次惩罚方法和 4DCT 肺运动恢复。

Quadratic penalty method for intensity-based deformable image registration and 4DCT lung motion recovery.

机构信息

Department of Radiation Oncology, Beaumont Health Systems, Royal Oak, MI, USA.

Department of Computation and Applied Mathematics, Rice University, Houston, TX, USA.

出版信息

Med Phys. 2019 May;46(5):2194-2203. doi: 10.1002/mp.13457. Epub 2019 Mar 14.

Abstract

UNLABELLED

Intensity-based deformable image registration (DIR) requires minimizing an image dissimilarity metric. Imaged anatomy, such as bones and vasculature, as well as the resolution of the digital grid, can often cause discontinuities in the corresponding objective function. Consequently, the application of a gradient-based optimization algorithm requires a preprocessing image smoothing to ensure the existence of necessary image derivatives. Simple block matching (exhaustive search) methods do not require image derivative approximations, but their general effectiveness is often hindered by erroneous solutions (outliers). Block match methods are therefore often coupled with a statistical outlier detection method to improve results.

PURPOSE

The purpose of this work is to present a spatially accurate, intensity-based DIR optimization formulation that can be solved with a straightforward gradient-free quadratic penalty algorithm and is suitable for 4D thoracic computed tomography (4DCT) registration. Additionally, a novel regularization strategy based on the well-known leave-one-out robust statistical model cross-validation method is introduced.

METHODS

The proposed Quadratic Penalty DIR (QPDIR) method minimizes both an image dissimilarity term, which is separable with respect to individual voxel displacements, and a regularization term derived from the classical leave-one-out cross-validation statistical method. The resulting DIR problem lends itself to a quadratic penalty function optimization approach, where each subproblem can be solved by straightforward block coordinate descent iteration.

RESULTS

The spatial accuracy of the method was assessed using expert-determined landmarks on ten 4DCT datasets available on www.dir-lab.com. The QPDIR algorithm achieved average millimeter spatial errors between 0.69 (0.91) and 1.19 (1.26) on the ten test cases. On all ten 4DCT test cases, the QPDIR method produced spatial accuracies that are superior or equivalent to those produced by current state-of-the-art methods. Moreover, QPDIR achieved accuracies at the resolution of the landmark error assessment (i.e., the interobserver error) on six of the ten cases.

CONCLUSION

The QPDIR algorithm is based on a simple quadratic penalty function formulation and a regularization term inspired by leave-one-out cross validation. The formulation lends itself to a parallelizable, gradient-free, block coordinate descent numerical optimization method. Numerical results indicate that the method achieves a high spatial accuracy on 4DCT inhale/exhale phases.

摘要

未加标签

基于强度的变形图像配准(DIR)需要最小化图像相似度度量。成像解剖结构,如骨骼和脉管系统,以及数字网格的分辨率,通常会导致目标函数的不连续。因此,应用基于梯度的优化算法需要对预处理图像进行平滑处理,以确保存在必要的图像导数。简单的块匹配(穷举搜索)方法不需要图像导数近似,但由于错误的解(异常值),其通常的有效性受到阻碍。因此,块匹配方法通常与统计异常值检测方法相结合,以提高结果。

目的

本工作旨在提出一种空间精确的基于强度的 DIR 优化公式,该公式可以用直接的无梯度二次惩罚算法求解,适用于 4D 胸部 CT(4DCT)配准。此外,还引入了一种基于著名的留一法稳健统计模型交叉验证方法的新正则化策略。

方法

所提出的二次惩罚 DIR(QPDIR)方法最小化了图像相似度项和由经典留一法交叉验证统计方法推导的正则化项。由此产生的 DIR 问题适合于二次惩罚函数优化方法,其中每个子问题都可以通过直接的块坐标下降迭代来解决。

结果

使用可在 www.dir-lab.com 上获得的十个 4DCT 数据集上的专家确定的标志点评估了该方法的空间准确性。QPDIR 算法在十个测试案例中的平均毫米空间误差分别为 0.69(0.91)和 1.19(1.26)。在所有十个 4DCT 测试案例中,QPDIR 方法产生的空间精度均优于或等同于当前最先进的方法。此外,QPDIR 在十个案例中的六个案例中达到了标志点误差评估的分辨率(即观察者间误差)的精度。

结论

QPDIR 算法基于简单的二次惩罚函数公式和受留一法交叉验证启发的正则化项。该公式适用于可并行化、无梯度、块坐标下降数值优化方法。数值结果表明,该方法在 4DCT 吸气/呼气阶段达到了很高的空间精度。

相似文献

8
Few-shot learning for deformable image registration in 4DCT images.基于 4DCT 图像的少样本学习的可变形图像配准。
Br J Radiol. 2022 Jan 1;95(1129):20210819. doi: 10.1259/bjr.20210819. Epub 2021 Oct 18.

引用本文的文献

5
Quantifying pulmonary perfusion from noncontrast computed tomography.从非对比 CT 量化肺灌注。
Med Phys. 2021 Apr;48(4):1804-1814. doi: 10.1002/mp.14792. Epub 2021 Mar 11.

本文引用的文献

3
The numerical stability of transformation-based CT ventilation.基于变换的 CT 通气的数值稳定性。
Int J Comput Assist Radiol Surg. 2017 Apr;12(4):569-580. doi: 10.1007/s11548-016-1509-x. Epub 2017 Jan 5.
4
GPU-accelerated Block Matching Algorithm for Deformable Registration of Lung CT Images.用于肺部CT图像可变形配准的GPU加速块匹配算法
Proc IEEE Int Conf Prog Inform Comput. 2015 Dec;2015:292-295. doi: 10.1109/PIC.2015.7489856. Epub 2016 Jun 13.
7
Morphometry-based measurements of the structural response to whole-brain radiation.基于形态测量学的全脑辐射结构反应测量
Int J Comput Assist Radiol Surg. 2015 Apr;10(4):393-401. doi: 10.1007/s11548-014-1128-3. Epub 2014 Nov 20.
9
Deformable medical image registration: a survey.可变形医学图像配准:综述。
IEEE Trans Med Imaging. 2013 Jul;32(7):1153-90. doi: 10.1109/TMI.2013.2265603. Epub 2013 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验