Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, United States.
Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, United States; Department of Computer Science & Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom.
J Mech Behav Biomed Mater. 2022 Oct;134:105337. doi: 10.1016/j.jmbbm.2022.105337. Epub 2022 Jun 30.
We present a constrained mixture-micturition-growth (CMMG) model for the bladder. It simulates bladder mechanics, voiding function (micturition) and tissue adaptations in response to altered biomechanical conditions. The CMMG model is calibrated with both in vivo and in vitro data from healthy male rat urinary bladders (cystometry, bioimaging of wall structure, mechanical testing) and applied to simulate the growth and remodeling (G&R) response to partial bladder outlet obstruction (BOO). The bladder wall is represented as a multi-layered, anisotropic, nonlinear constrained mixture. A short time scale micturition component of the CMMG model accounts for the active and passive mechanics of voiding. Over a second, longer time scale, G&R algorithms for the evolution of both cellular and extracellular constituents act to maintain/restore bladder (homeostatic) functionality. The CMMG model is applied to a spherical membrane model of the BOO bladder utilizing temporal data from an experimental male rodent model to parameterize and then verify the model. Consistent with the experimental studies of BOO, the model predicts: an initial loss of voiding capacity followed by hypertrophy of SMC to restore voiding function; bladder enlargement; collagen remodeling to maintain its role as a protective sheath; and increased voiding duration with lower average flow rate. This CMMG model enables a mechanistic approach for investigating the bladder's structure-function relationship and its adaption in pathological conditions. While the approach is illustrated with a conceptual spherical bladder model, it provides the basis for application of the CMMG model to anatomical geometries. Such a mechanistic approach has promise as an in silico tool for the rational development of new surgical and pharmacological treatments for bladder diseases such as BOO.
我们提出了一种用于膀胱的约束混合排尿-生长(CMMG)模型。它模拟了膀胱力学、排尿功能(排尿)以及组织适应改变生物力学条件的情况。CMMG 模型通过健康雄性大鼠膀胱的体内和体外数据(膀胱测压法、壁结构生物成像、机械测试)进行校准,并应用于模拟部分膀胱出口梗阻(BOO)的生长和重塑(G&R)反应。膀胱壁被表示为一个多层、各向异性、非线性约束混合物。CMMG 模型的短时间尺度排尿成分负责排空的主动和被动力学。在第二秒,更长的时间尺度上,细胞和细胞外成分的 G&R 算法作用于维持/恢复膀胱(稳态)功能。CMMG 模型应用于 BOO 膀胱的球形膜模型,利用来自雄性啮齿动物实验模型的时间数据进行参数化,然后验证模型。与 BOO 的实验研究一致,该模型预测:排空能力的初始丧失,随后 SMC 肥大以恢复排空功能;膀胱扩大;胶原重塑以维持其作为保护鞘的作用;以及排空持续时间增加,平均流量降低。这种 CMMG 模型为研究膀胱的结构-功能关系及其在病理条件下的适应提供了一种机械方法。虽然该方法是用概念性的球形膀胱模型来说明的,但它为将 CMMG 模型应用于解剖几何形状提供了基础。这种机械方法有望成为一种计算工具,用于合理开发治疗 BOO 等膀胱疾病的新手术和药物治疗方法。