Suppr超能文献

软组织生长与重塑的约束混合模型——二十年后

Constrained Mixture Models of Soft Tissue Growth and Remodeling - Twenty Years After.

作者信息

Humphrey J D

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT 06520 USA.

出版信息

J Elast. 2021 Aug;145(1-2):49-75. doi: 10.1007/s10659-020-09809-1. Epub 2021 Jan 21.

Abstract

Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstructure) are well-suited for studying tissue adaptations, disease progression, and responses to injury or clinical intervention. Such approaches also can be used to design improved tissue engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years ago and explores its usage since by contrasting simulations of diverse vascular conditions. The discussion is framed within the concept of mechanical homeostasis, with consideration of solid-fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and future opportunities as we seek to understand better the evolving composition, geometry, and material behaviors of soft tissues under complex conditions.

摘要

柔软的生物组织由多种细胞类型和细胞外基质成分组成,每一种都可能具有独特的自然结构、材料特性和更新速率。因此,基于混合物的生长(质量变化)和重塑(微观结构变化)模型非常适合用于研究组织适应性、疾病进展以及对损伤或临床干预的反应。这些方法还可用于设计改良的组织工程构建体,以修复、替换或再生组织。本文以血管作为软组织的典型代表,回顾了二十年前提出的一种约束混合物理论,并通过对比不同血管状况的模拟来探讨其自提出以来的应用。讨论围绕机械稳态的概念展开,同时考虑固液相互作用、炎症和细胞信号传导,这既突出了过去的成就,也指出了未来的机遇,因为我们试图更好地理解复杂条件下软组织不断演变的组成、几何形状和材料行为。

相似文献

1
Constrained Mixture Models of Soft Tissue Growth and Remodeling - Twenty Years After.
J Elast. 2021 Aug;145(1-2):49-75. doi: 10.1007/s10659-020-09809-1. Epub 2021 Jan 21.
2
Homogenized constrained mixture models for anisotropic volumetric growth and remodeling.
Biomech Model Mechanobiol. 2017 Jun;16(3):889-906. doi: 10.1007/s10237-016-0859-1. Epub 2016 Dec 5.
3
Critical roles of time-scales in soft tissue growth and remodeling.
APL Bioeng. 2018 Jun 5;2(2):026108. doi: 10.1063/1.5017842. eCollection 2018 Jun.
4
A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue.
Biomech Model Mechanobiol. 2016 Dec;15(6):1389-1403. doi: 10.1007/s10237-016-0770-9.
6
Continuum mixture models of biological growth and remodeling: past successes and future opportunities.
Annu Rev Biomed Eng. 2012;14:97-111. doi: 10.1146/annurev-bioeng-071910-124726.
7
From Transcript to Tissue: Multiscale Modeling from Cell Signaling to Matrix Remodeling.
Ann Biomed Eng. 2021 Jul;49(7):1701-1715. doi: 10.1007/s10439-020-02713-8. Epub 2021 Jan 7.
8
Interstitial growth and remodeling of biological tissues: tissue composition as state variables.
J Mech Behav Biomed Mater. 2014 Jan;29:544-56. doi: 10.1016/j.jmbbm.2013.03.003. Epub 2013 Mar 15.
9
How to implement constrained mixture growth and remodeling algorithms for soft biological tissues.
J Mech Behav Biomed Mater. 2023 Apr;140:105733. doi: 10.1016/j.jmbbm.2023.105733. Epub 2023 Feb 19.
10
Mechanobiological Stability of Biological Soft Tissues.
J Mech Phys Solids. 2019 Apr;125:298-325. doi: 10.1016/j.jmps.2018.12.013. Epub 2018 Dec 21.

引用本文的文献

1
A continuum model for tissues with moderate cell density.
Comput Biol Med. 2025 Aug 30;197(Pt A):111025. doi: 10.1016/j.compbiomed.2025.111025.
2
Growth Arrest of Thoracic Aortic Aneurysms in Aging Marfan Mice.
bioRxiv. 2025 Jun 24:2025.06.18.660413. doi: 10.1101/2025.06.18.660413.
3
Calcification-neighboring regions of atherosclerotic aortic tissue exhibit elevated stiffness without elevated radiodensity.
J Mech Behav Biomed Mater. 2025 Aug;168:107034. doi: 10.1016/j.jmbbm.2025.107034. Epub 2025 Apr 23.
4
Biomechanical and histomorphometric characterization of the melatonin treatment effect in the carotid artery subjected to hypobaric hypoxia.
Front Bioeng Biotechnol. 2025 Apr 16;13:1554004. doi: 10.3389/fbioe.2025.1554004. eCollection 2025.
5
Constrained optimization of scaffold behavior for improving tissue engineered vascular grafts.
J Biomech. 2025 Jun;186:112670. doi: 10.1016/j.jbiomech.2025.112670. Epub 2025 Apr 18.
7
Deployment of a digital twin using the coupled momentum method for fluid-structure interaction: A case study for aortic aneurysm.
Comput Biol Med. 2025 May;190:110084. doi: 10.1016/j.compbiomed.2025.110084. Epub 2025 Apr 3.
8
Development and calibration of digital twins for human skin growth in tissue expansion.
Acta Biomater. 2025 May 15;198:267-280. doi: 10.1016/j.actbio.2025.03.026. Epub 2025 Mar 25.
9
Multi-Scale Multi-Cell Computational Model of Inflammation-Mediated Aortic Remodeling in Hypertension.
Ann Biomed Eng. 2025 Apr;53(4):1014-1023. doi: 10.1007/s10439-025-03685-3. Epub 2025 Feb 4.
10
Biomechanics of soft biological tissues and organs, mechanobiology, homeostasis and modelling.
J R Soc Interface. 2025 Jan;22(222):20240361. doi: 10.1098/rsif.2024.0361. Epub 2025 Jan 29.

本文引用的文献

1
Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues.
J Elast. 2017 Dec;129(1-2):69-105. doi: 10.1007/s10659-017-9630-9. Epub 2017 Mar 1.
2
From Transcript to Tissue: Multiscale Modeling from Cell Signaling to Matrix Remodeling.
Ann Biomed Eng. 2021 Jul;49(7):1701-1715. doi: 10.1007/s10439-020-02713-8. Epub 2021 Jan 7.
3
Mechanics-driven mechanobiological mechanisms of arterial tortuosity.
Sci Adv. 2020 Dec 4;6(49). doi: 10.1126/sciadv.abd3574. Print 2020 Dec.
4
Reconstructing vascular homeostasis by growth-based prestretch and optimal fiber deposition.
J Mech Behav Biomed Mater. 2021 Feb;114:104161. doi: 10.1016/j.jmbbm.2020.104161. Epub 2020 Nov 7.
5
Numerical knockouts-In silico assessment of factors predisposing to thoracic aortic aneurysms.
PLoS Comput Biol. 2020 Oct 20;16(10):e1008273. doi: 10.1371/journal.pcbi.1008273. eCollection 2020 Oct.
6
Vascular adaptation in the presence of external support - A modeling study.
J Mech Behav Biomed Mater. 2020 Oct;110:103943. doi: 10.1016/j.jmbbm.2020.103943. Epub 2020 Jun 25.
7
Computational Modeling Predicts Immuno-Mechanical Mechanisms of Maladaptive Aortic Remodeling in Hypertension.
Int J Eng Sci. 2019 Aug;141:35-46. doi: 10.1016/j.ijengsci.2019.05.014. Epub 2019 May 31.
8
Fast, Rate-Independent, Finite Element Implementation of a 3D Constrained Mixture Model of Soft Tissue Growth and Remodeling.
Comput Methods Appl Mech Eng. 2020 Aug 15;368. doi: 10.1016/j.cma.2020.113156. Epub 2020 Jun 5.
9
Spontaneous reversal of stenosis in tissue-engineered vascular grafts.
Sci Transl Med. 2020 Apr 1;12(537). doi: 10.1126/scitranslmed.aax6919.
10
A computational bio-chemo-mechanical model of in vivo tissue-engineered vascular graft development.
Integr Biol (Camb). 2020 Apr 14;12(3):47-63. doi: 10.1093/intbio/zyaa004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验