Irwin P G J, Teanby N A, Fletcher L N, Toledo D, Orton G S, Wong M H, Roman M T, Pérez-Hoyos S, James A, Dobinson J
Department of Physics University of Oxford Oxford UK.
School of Earth Sciences University of Bristol Bristol UK.
J Geophys Res Planets. 2022 Jun;127(6):e2022JE007189. doi: 10.1029/2022JE007189. Epub 2022 Jun 4.
We present a reanalysis (using the Minnaert limb-darkening approximation) of visible/near-infrared (0.3-2.5 μm) observations of Uranus and Neptune made by several instruments. We find a common model of the vertical aerosol distribution i.e., consistent with the observed reflectivity spectra of both planets, consisting of: (a) a deep aerosol layer with a base pressure >5-7 bar, assumed to be composed of a mixture of HS ice and photochemical haze; (b) a layer of photochemical haze/ice, coincident with a layer of high static stability at the methane condensation level at 1-2 bar; and (c) an extended layer of photochemical haze, likely mostly of the same composition as the 1-2-bar layer, extending from this level up through to the stratosphere, where the photochemical haze particles are thought to be produced. For Neptune, we find that we also need to add a thin layer of micron-sized methane ice particles at ∼0.2 bar to explain the enhanced reflection at longer methane-absorbing wavelengths. We suggest that methane condensing onto the haze particles at the base of the 1-2-bar aerosol layer forms ice/haze particles that grow very quickly to large size and immediately "snow out" (as predicted by Carlson et al. (1988), https://doi.org/10.1175/1520-0469(1988)045<2066:CMOTGP>2.0.CO;2), re-evaporating at deeper levels to release their core haze particles to act as condensation nuclei for HS ice formation. In addition, we find that the spectral characteristics of "dark spots", such as the Voyager-2/ISS Great Dark Spot and the HST/WFC3 NDS-2018, are well modelled by a darkening or possibly clearing of the deep aerosol layer only.
我们对几台仪器对天王星和海王星进行的可见光/近红外(0.3 - 2.5微米)观测进行了重新分析(使用米纳尔特临边昏暗近似法)。我们发现了一个垂直气溶胶分布的通用模型,即与两颗行星观测到的反射光谱一致,该模型由以下部分组成:(a) 一个深层气溶胶层,底部压力>5 - 7巴,假定由硫化氢冰和光化学霾的混合物组成;(b) 一层光化学霾/冰,与1 - 2巴甲烷凝结层处的高静力稳定层重合;(c) 一层延伸的光化学霾层,其成分可能与1 - 2巴层基本相同,从该层向上延伸至平流层,光化学霾颗粒被认为是在平流层产生的。对于海王星,我们发现还需要在约0.2巴处添加一层微米级的甲烷冰颗粒,以解释在较长甲烷吸收波长处增强的反射。我们认为,在1 - 2巴气溶胶层底部凝结在霾颗粒上的甲烷形成了冰/霾颗粒,这些颗粒迅速长大到很大尺寸并立即“沉降”(如卡尔森等人(1988年)所预测,https://doi.org/10.1175/1520 - 0469(1988)045<2066:CMOTGP>2.0.CO;2),在更深层重新蒸发,释放出其核心霾颗粒,作为形成硫化氢冰的凝结核。此外,我们发现,“暗斑”的光谱特征,如“旅行者2号”/成像科学子系统大黑斑和哈勃太空望远镜/第三代广域相机3的NDS - 2018,仅通过深层气溶胶层的变暗或可能的变清就能很好地模拟。