Chen Jia-Li, Kaltsoyannis Nikolas
Department of Chemistry, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
J Phys Chem C Nanomater Interfaces. 2022 Jul 14;126(27):11426-11435. doi: 10.1021/acs.jpcc.2c03804. Epub 2022 Jul 1.
DFT + with occupation matrix control (OMC) is applied to study computationally bulk UO and PuO, the latter for the first time. Using the PBESol functional in conjunction with OMC locates AFM and NM ground states for UO and PuO, respectively, in agreement with experimental findings. By simulating the lattice parameter, magnetic moment, band gap, and densities of states, = 4.0 eV is recommended for AFM UO, yielding data close to experiments for all considered properties. = 4.5 and 4.0 eV are recommended for NM and AFM PuO, respectively, though much larger values (c. 10 eV) are required to yield the most recently reported PuO band gap. For both oxides, several excited states have similar properties to the ground state, reinforcing the need to employ OMC wherever possible.
采用带有占据矩阵控制(OMC)的密度泛函理论(DFT +)对块状UO和PuO进行了计算研究,其中对PuO的研究尚属首次。结合OMC使用PBESol泛函分别确定了UO和PuO的反铁磁(AFM)和非磁(NM)基态,这与实验结果一致。通过模拟晶格参数、磁矩、带隙和态密度,对于反铁磁UO推荐采用 = 4.0 eV,所得到的所有考虑属性的数据均与实验数据相近。对于非磁和反铁磁PuO,分别推荐采用 = 4.5和4.0 eV,不过要得到最近报道的PuO带隙则需要大得多的 值(约10 eV)。对于这两种氧化物,几个激发态具有与基态相似的属性,这进一步强调了尽可能采用OMC的必要性。