Suppr超能文献

一种基于数字乳腺X线摄影的用于乳腺癌分类的残差卷积变压器编码器混合工作流程。

A Hybrid Workflow of Residual Convolutional Transformer Encoder for Breast Cancer Classification Using Digital X-ray Mammograms.

作者信息

Al-Tam Riyadh M, Al-Hejri Aymen M, Narangale Sachin M, Samee Nagwan Abdel, Mahmoud Noha F, Al-Masni Mohammed A, Al-Antari Mugahed A

机构信息

School of Computational Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India.

School of Media Studies, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India.

出版信息

Biomedicines. 2022 Nov 18;10(11):2971. doi: 10.3390/biomedicines10112971.

Abstract

Breast cancer, which attacks the glandular epithelium of the breast, is the second most common kind of cancer in women after lung cancer, and it affects a significant number of people worldwide. Based on the advantages of Residual Convolutional Network and the Transformer Encoder with Multiple Layer Perceptron (MLP), this study proposes a novel hybrid deep learning Computer-Aided Diagnosis (CAD) system for breast lesions. While the backbone residual deep learning network is employed to create the deep features, the transformer is utilized to classify breast cancer according to the self-attention mechanism. The proposed CAD system has the capability to recognize breast cancer in two scenarios: (Binary classification) and (Multi-classification). Data collection and preprocessing, patch image creation and splitting, and artificial intelligence-based breast lesion identification are all components of the execution framework that are applied consistently across both cases. The effectiveness of the proposed AI model is compared against three separate deep learning models: a custom CNN, the VGG16, and the ResNet50. Two datasets, CBIS-DDSM and DDSM, are utilized to construct and test the proposed CAD system. Five-fold cross validation of the test data is used to evaluate the accuracy of the performance results. The suggested hybrid CAD system achieves encouraging evaluation results, with overall accuracies of 100% and 95.80% for binary and multiclass prediction challenges, respectively. The experimental results reveal that the proposed hybrid AI model could identify benign and malignant breast tissues significantly, which is important for radiologists to recommend further investigation of abnormal mammograms and provide the optimal treatment plan.

摘要

乳腺癌侵袭乳腺的腺上皮,是女性中仅次于肺癌的第二大常见癌症,在全球影响着大量人群。基于残差卷积网络以及带有多层感知器(MLP)的Transformer编码器的优势,本研究提出了一种用于乳腺病变的新型混合深度学习计算机辅助诊断(CAD)系统。在使用骨干残差深度学习网络来创建深度特征的同时,利用Transformer根据自注意力机制对乳腺癌进行分类。所提出的CAD系统有能力在两种情况下识别乳腺癌:(二分类)和(多分类)。数据收集与预处理、补丁图像创建与分割以及基于人工智能的乳腺病变识别都是执行框架的组成部分,在这两种情况下都持续应用。将所提出的人工智能模型的有效性与三种不同的深度学习模型进行比较:自定义卷积神经网络、VGG16和ResNet50。利用两个数据集CBIS-DDSM和DDSM来构建和测试所提出的CAD系统。对测试数据进行五折交叉验证以评估性能结果的准确性。所建议的混合CAD系统取得了令人鼓舞的评估结果,在二分类和多分类预测挑战中的总体准确率分别为100%和95.80%。实验结果表明,所提出的混合人工智能模型能够显著识别良性和恶性乳腺组织,这对于放射科医生推荐对异常乳房X光照片进行进一步检查并提供最佳治疗方案非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23bf/9687367/7d920a0eee4c/biomedicines-10-02971-g001.jpg

相似文献

3
A hybrid explainable ensemble transformer encoder for pneumonia identification from chest X-ray images.
J Adv Res. 2023 Jun;48:191-211. doi: 10.1016/j.jare.2022.08.021. Epub 2022 Sep 7.
5
Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms.
Comput Methods Programs Biomed. 2020 Nov;196:105584. doi: 10.1016/j.cmpb.2020.105584. Epub 2020 Jun 4.
6
7
Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram.
Adv Exp Med Biol. 2020;1213:59-72. doi: 10.1007/978-3-030-33128-3_4.
8
Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system.
Comput Methods Programs Biomed. 2018 Apr;157:85-94. doi: 10.1016/j.cmpb.2018.01.017. Epub 2018 Jan 31.
9
An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm.
Neural Comput Appl. 2022;34(20):18015-18033. doi: 10.1007/s00521-022-07445-5. Epub 2022 Jun 8.

引用本文的文献

3
Surface defect detection on industrial drum rollers: Using enhanced YOLOv8n and structured light for accurate inspection.
PLoS One. 2025 Feb 5;20(2):e0316569. doi: 10.1371/journal.pone.0316569. eCollection 2025.
4
A Comprehensive Review on Synergy of Multi-Modal Data and AI Technologies in Medical Diagnosis.
Bioengineering (Basel). 2024 Feb 25;11(3):219. doi: 10.3390/bioengineering11030219.
5
Diagnostic capabilities of artificial intelligence as an additional reader in a breast cancer screening program.
Eur Radiol. 2024 Sep;34(9):6145-6157. doi: 10.1007/s00330-024-10661-3. Epub 2024 Feb 22.
6
Identification of Luminal A breast cancer by using deep learning analysis based on multi-modal images.
Front Oncol. 2023 Nov 17;13:1243126. doi: 10.3389/fonc.2023.1243126. eCollection 2023.
8
Automatic Classification of Colour Fundus Images for Prediction Eye Disease Types Based on Hybrid Features.
Diagnostics (Basel). 2023 May 11;13(10):1706. doi: 10.3390/diagnostics13101706.

本文引用的文献

1
Vision Transformers for Classification of Breast Ultrasound Images.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:480-483. doi: 10.1109/EMBC48229.2022.9871809.
2
A hybrid explainable ensemble transformer encoder for pneumonia identification from chest X-ray images.
J Adv Res. 2023 Jun;48:191-211. doi: 10.1016/j.jare.2022.08.021. Epub 2022 Sep 7.
3
Semi-supervised vision transformer with adaptive token sampling for breast cancer classification.
Front Pharmacol. 2022 Jul 22;13:929755. doi: 10.3389/fphar.2022.929755. eCollection 2022.
4
A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images.
Med Phys. 2022 Sep;49(9):5787-5798. doi: 10.1002/mp.15852. Epub 2022 Jul 30.
6
RT-ViT: Real-Time Monocular Depth Estimation Using Lightweight Vision Transformers.
Sensors (Basel). 2022 May 19;22(10):3849. doi: 10.3390/s22103849.
7
Breast lesions classifications of mammographic images using a deep convolutional neural network-based approach.
PLoS One. 2022 Jan 27;17(1):e0263126. doi: 10.1371/journal.pone.0263126. eCollection 2022.
8
Anomaly Detection of Calcifications in Mammography Based on 11,000 Negative Cases.
IEEE Trans Biomed Eng. 2022 May;69(5):1639-1650. doi: 10.1109/TBME.2021.3126281. Epub 2022 Apr 21.
9
3D DCE-MRI Radiomic Analysis for Malignant Lesion Prediction in Breast Cancer Patients.
Acad Radiol. 2022 Jun;29(6):830-840. doi: 10.1016/j.acra.2021.08.024. Epub 2021 Sep 29.
10
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.
CA Cancer J Clin. 2021 May;71(3):209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验