Suppr超能文献

利用视觉Transformer和卷积神经网络特征对乳腺癌的分子亚型进行分类。

Classifying the molecular subtype of breast cancer using vision transformer and convolutional neural network features.

作者信息

Kai Chiharu, Tamori Hideaki, Ohtsuka Tsunehiro, Nara Miyako, Yoshida Akifumi, Sato Ikumi, Futamura Hitoshi, Kodama Naoki, Kasai Satoshi

机构信息

Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimamichou, Kita-Ku, Niigata, Japan.

Major in Health and Welfare, Graduate School of Niigata, University of Health and Welfare, Niigata, Japan.

出版信息

Breast Cancer Res Treat. 2025 Apr;210(3):771-782. doi: 10.1007/s10549-025-07614-9. Epub 2025 Jan 22.

Abstract

PURPOSE

Identification of the molecular subtypes in breast cancer allows to optimize treatment strategies, but usually requires invasive needle biopsy. Recently, non-invasive imaging has emerged as promising means to classify them. Magnetic resonance imaging is often used for this purpose because it is three-dimensional and highly informative. Instead, only a few reports have documented the use of mammograms. Given that mammography is the first choice for breast cancer screening, using it to classify molecular subtypes would allow for early intervention on a much wider scale. Here, we aimed to evaluate the effectiveness of combining global and local mammographic features by using Vision Transformer (ViT) and Convolutional Neural Network (CNN) to classify molecular subtypes in breast cancer.

METHODS

The feature values for binary classification were calculated using the ViT and EfficientnetV2 feature extractors, followed by dimensional compression via principal component analysis. LightGBM was used to perform binary classification of each molecular subtype: triple-negative, HER2-enriched, luminal A, and luminal B.

RESULTS

The combination of ViT and CNN achieved higher accuracy than ViT or CNN alone. The sensitivity for triple-negative subtypes was very high (0.900, with F-value = 0.818); whereas F-value and sensitivity were 0.720 and 0.750 for HER2-enriched, 0.765 and 0.867 for luminal A, and 0.614 and 0.711 for luminal B subtypes, respectively.

CONCLUSION

Features obtained from mammograms by combining ViT and CNN allow the classification of molecular subtypes with high accuracy. This approach could streamline early treatment workflows and triage, especially for poor prognosis subtypes such as triple-negative breast cancer.

摘要

目的

识别乳腺癌的分子亚型有助于优化治疗策略,但通常需要进行侵入性针吸活检。最近,非侵入性成像已成为对其进行分类的有前景的手段。磁共振成像常被用于此目的,因为它是三维的且信息丰富。相反,仅有少数报告记录了乳腺钼靶的应用。鉴于乳腺钼靶是乳腺癌筛查的首选方法,利用它对分子亚型进行分类将有助于在更广泛的范围内进行早期干预。在此,我们旨在评估通过使用视觉Transformer(ViT)和卷积神经网络(CNN)结合全局和局部乳腺钼靶特征对乳腺癌分子亚型进行分类的有效性。

方法

使用ViT和EfficientnetV2特征提取器计算二元分类的特征值,随后通过主成分分析进行降维。使用LightGBM对每个分子亚型进行二元分类:三阴性、HER2富集型、管腔A型和管腔B型。

结果

ViT和CNN的组合比单独使用ViT或CNN具有更高的准确率。三阴性亚型的灵敏度非常高(0.900,F值=0.818);而HER2富集型的F值和灵敏度分别为0.720和0.750,管腔A型为0.765和0.867,管腔B型为0.614和0.711。

结论

通过结合ViT和CNN从乳腺钼靶获得的特征能够高精度地对分子亚型进行分类。这种方法可以简化早期治疗流程和分诊,特别是对于预后较差的亚型,如三阴性乳腺癌。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验