Schánilec V, Brunn O, Horáček M, Krátký S, Meluzín P, Šikola T, Canals B, Rougemaille N
Université Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France.
Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic.
Phys Rev Lett. 2022 Jul 8;129(2):027202. doi: 10.1103/PhysRevLett.129.027202.
We demonstrate that the physics of the F model can be approached very closely in a two-dimensional artificial magnetic system. Faraday lines spanning across the lattice and carrying a net polarization, together with chiral Faraday loops characterized by a zero magnetic susceptibility, are imaged in real space using magnetic force microscopy. Our measurements reveal the proliferation of Faraday lines and Faraday loops as the system is brought from low- to high-energy magnetic configurations. They also reveal a link between the Faraday loop density and icelike spin-spin correlations in the magnetic structure factor. Key for this Letter, the density of topological defects remains small, on the order of 1% or less, and negligible compared to the density of Faraday loops. This is made possible by replacing the spin degree of freedom used in conventional lattices of interacting nanomagnets by a micromagnetic knob, which can be finely tuned to adjust the vertex energy directly, rather than modifying the two-body interactions.
我们证明,在二维人工磁系统中可以非常接近地实现F模型的物理特性。利用磁力显微镜在实空间中对跨越晶格并携带净极化的法拉第线以及具有零磁化率特征的手性法拉第环进行成像。我们的测量揭示了随着系统从低能量磁构型转变为高能量磁构型,法拉第线和法拉第环的增殖情况。它们还揭示了法拉第环密度与磁结构因子中类冰自旋 - 自旋相关性之间的联系。本信函的关键在于,拓扑缺陷的密度仍然很小,约为1%或更低,与法拉第环的密度相比可忽略不计。这是通过用一个微磁旋钮取代传统相互作用纳米磁体晶格中使用的自旋自由度来实现的,该旋钮可以精细调节以直接调整顶点能量,而不是修改两体相互作用。