BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clinic and Hospital Sant Joan de Déu), Institut Clínic de Ginecología, Obstetrícia I Neonatología, Fetal i+D Fetal Medicine Research Center, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona. Barcelona, Spain; Center for Biomedical Research on Rare Diseases, Institute of Health Carlos III, Madrid, Spain.
MovumTech, Madrid, Spain.
Am J Obstet Gynecol. 2023 Jan;228(1):78.e1-78.e13. doi: 10.1016/j.ajog.2022.07.027. Epub 2022 Jul 20.
Among women with preterm labor, those with intra-amniotic infection present the highest risk of early delivery and the most adverse outcomes. The identification of intra-amniotic infection requires amniocentesis, perceived as too invasive by women and physicians. Noninvasive methods for identifying intra-amniotic infection and/or early delivery are crucial to focus early efforts on high-risk preterm labor women while avoiding unnecessary interventions in low-risk preterm labor women.
This study modeled the best performing models, integrating biochemical data with clinical and ultrasound information to predict a composite outcome of intra-amniotic infection and/or spontaneous delivery within 7 days.
From 2015 to 2020, data from a cohort of women, who underwent amniocentesis to rule in or rule out intra-amniotic infection or inflammation, admitted with a diagnosis of preterm labor at <34 weeks of gestation at the Hospital Clinic and Hospital Sant Joan de Déu, Barcelona, Spain, were used. At admission, transvaginal ultrasound was performed, and maternal blood and vaginal samples were collected. Using high-dimensional biology, vaginal proteins (using multiplex immunoassay), amino acids (using high-performance liquid chromatography), and bacteria (using 16S ribosomal RNA gene amplicon sequencing) were explored to predict the composite outcome. We selected ultrasound, maternal blood, and vaginal predictors that could be tested with rapid diagnostic techniques and developed prediction models employing machine learning that was applied in a validation cohort.
A cohort of 288 women with preterm labor at <34 weeks of gestation, of which 103 (35%) had a composite outcome of intra-amniotic infection and/or spontaneous delivery within 7 days, were included in this study. The sample was divided into derivation (n=116) and validation (n=172) cohorts. Of note, 4 prediction models were proposed, including ultrasound transvaginal cervical length, maternal C-reactive protein, vaginal interleukin 6 (using an automated immunoanalyzer), vaginal pH (using a pH meter), vaginal lactic acid (using a reflectometer), and vaginal Lactobacillus genus (using quantitative polymerase chain reaction), with areas under the receiving operating characteristic curve ranging from 82.2% (95% confidence interval, ±3.1%) to 85.2% (95% confidence interval, ±3.1%), sensitivities ranging from 76.1% to 85.9%, and specificities ranging from 75.2% to 85.1%.
The study results have provided proof of principle of how noninvasive methods suitable for point-of-care systems can select high-risk cases among women with preterm labor and might substantially aid in clinical management and outcomes while improving the use of resources and patient experience.
在出现早产的女性中,有宫内感染的女性面临着早产和不良结局的最高风险。宫内感染的诊断需要进行羊膜穿刺术,但这种方法被女性和医生认为过于侵入性。因此,寻找能够识别宫内感染和/或早产的非侵入性方法对于将早期努力集中在高危早产妇女身上,同时避免对低危早产妇女进行不必要的干预至关重要。
本研究通过整合生化数据与临床和超声信息,建立了最佳模型,以预测 7 天内宫内感染和/或自发性分娩的复合结局。
本研究使用了来自西班牙巴塞罗那 Clinic 医院和 Sant Joan de Déu 医院的一个队列数据,该队列纳入了在妊娠 34 周前因早产诊断入院且接受过羊膜穿刺术以排除或确诊宫内感染或炎症的女性。入院时进行经阴道超声检查,并采集母体血液和阴道样本。使用高维生物学方法,通过多重免疫分析检测阴道蛋白、高效液相色谱检测氨基酸、16S 核糖体 RNA 基因扩增子测序检测细菌,以预测复合结局。我们选择了可以通过快速诊断技术进行检测的超声、母体血液和阴道预测因子,并使用机器学习开发了预测模型,该模型在验证队列中进行了应用。
本研究纳入了 288 名妊娠 34 周前的早产女性,其中 103 名(35%)在 7 天内出现了宫内感染和/或自发性分娩的复合结局。该样本被分为推导队列(n=116)和验证队列(n=172)。值得注意的是,提出了 4 种预测模型,包括经阴道超声宫颈长度、母体 C 反应蛋白、阴道白细胞介素 6(使用自动免疫分析仪)、阴道 pH 值(使用 pH 计)、阴道乳酸(使用反射计)和阴道乳杆菌属(使用定量聚合酶链反应),接受者操作特征曲线下面积范围为 82.2%(95%置信区间,±3.1%)至 85.2%(95%置信区间,±3.1%),灵敏度范围为 76.1%至 85.9%,特异性范围为 75.2%至 85.1%。
本研究结果证明了非侵入性方法如何适用于床边检测系统,以选择早产妇女中的高危病例,这可能会极大地辅助临床管理和结局,并改善资源利用和患者体验。