Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany.
Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany.
J Biol Chem. 2022 Sep;298(9):102291. doi: 10.1016/j.jbc.2022.102291. Epub 2022 Jul 20.
[NiFe]-hydrogenases (Hyds) comprise a small and a large subunit. The latter harbors the biologically unique NiFeCO active-site cofactor. The maturation process includes the assembly of the FeCO cofactor precursor, nickel binding, endoproteolytic cleavage of the large subunit, and dimerization with the small subunit to yield active enzyme. The biosynthesis of the FeCO moiety of [NiFe]-Hyd-1 and Hyd-2 occurs on the scaffold complex HybG-HypD (GD), whereas the HypC-HypD complex is specific for the assembly of Hyd-3. The metabolic source and the route for delivering iron to the active site remain unclear. To investigate the maturation process of O-tolerant Hyd-1 from Escherichia coli, we developed an enzymatic in vitro reconstitution system that allows for the synthesis of Hyd-1 using only purified components. Together with this in vitro reconstitution system, we employed biochemical analyses, infrared spectroscopy (attenuated total reflection FTIR), mass spectrometry (MS), and microscale thermophoresis to monitor the iron transfer during the maturation process and to understand how the FeCO cofactor precursor is ultimately incorporated into the large subunit. We demonstrate the direct transfer of iron from Fe-labeled GD complex to the large subunit of Hyd-1. Our data reveal that the GD complex exclusively interacts with the large subunit of Hyd-1 and Hyd-2 but not with the large subunit of Hyd-3. Furthermore, we show that the presence of iron in the active site is a prerequisite for nickel insertion. Taken together, these findings reveal how the FeCO cofactor precursor is transferred and incorporated into the active site of [NiFe]-Hyd.
[NiFe]-氢化酶(Hyds)由一个小亚基和一个大亚基组成。后者含有生物独特的NiFeCO 活性位点辅因子。成熟过程包括FeCO 辅因子前体的组装、镍结合、大亚基的内切蛋白酶切割,以及与小亚基的二聚化,从而产生有活性的酶。[NiFe]-Hyd-1 和 Hyd-2 的FeCO 部分的生物合成发生在 HybG-HypD(GD)支架复合物上,而 HypC-HypD 复合物则专门用于组装 Hyd-3。铁向活性位点的代谢来源和输送途径仍不清楚。为了研究来自大肠杆菌的耐氧 Hyd-1 的成熟过程,我们开发了一种酶促体外重组系统,该系统仅使用纯化的成分即可合成 Hyd-1。结合这个体外重组系统,我们采用生化分析、红外光谱(衰减全反射 FTIR)、质谱(MS)和微尺度热泳来监测成熟过程中铁的转移,并了解FeCO 辅因子前体最终如何被整合到大亚基中。我们证明了铁从 Fe 标记的 GD 复合物直接转移到大亚基的 Hyd-1。我们的数据表明,GD 复合物仅与 Hyd-1 和 Hyd-2 的大亚基相互作用,而不与 Hyd-3 的大亚基相互作用。此外,我们表明活性位点中存在铁是镍插入的前提条件。总之,这些发现揭示了FeCO 辅因子前体如何被转移并整合到[NiFe]-Hyd 的活性位点中。