Suppr超能文献

合成附生生物作为一个模型系统,用于理解复杂淡水微生物群落中的物种动态。

Synthetic periphyton as a model system to understand species dynamics in complex microbial freshwater communities.

机构信息

Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.

出版信息

NPJ Biofilms Microbiomes. 2022 Jul 22;8(1):61. doi: 10.1038/s41522-022-00322-y.

Abstract

Phototrophic biofilms, also known as periphyton, are microbial freshwater communities that drive crucial ecological processes in streams and lakes. Gaining a deep mechanistic understanding of the biological processes occurring in natural periphyton remains challenging due to the high complexity and variability of such communities. To address this challenge, we rationally developed a workflow to construct a synthetic community by co-culturing 26 phototrophic species (i.e., diatoms, green algae, and cyanobacteria) that were inoculated in a successional sequence to create a periphytic biofilm on glass slides. We show that this community is diverse, stable, and highly reproducible in terms of microbial composition, function, and 3D spatial structure of the biofilm. We also demonstrate the ability to monitor microbial dynamics at the single species level during periphyton development and how their abundances are impacted by stressors such as increased temperature and a herbicide, singly and in combination. Overall, such a synthetic periphyton, grown under controlled conditions, can be used as a model system for theory testing through targeted manipulation.

摘要

光养生物膜,也称为周丛生物,是驱动溪流和湖泊中关键生态过程的微生物淡水群落。由于这些群落的高度复杂性和可变性,深入了解自然周丛生物中发生的生物学过程仍然具有挑战性。为了应对这一挑战,我们合理地开发了一种工作流程,通过共培养 26 种光养生物(即硅藻、绿藻和蓝细菌)来构建一个合成群落,这些生物按照顺序接种,在玻璃幻灯片上形成周丛生物膜。我们表明,该群落具有多样性、稳定性和高度可重复性,表现在生物膜的微生物组成、功能和 3D 空间结构方面。我们还证明了在周丛生物发育过程中能够以单一种群水平监测微生物动态,以及它们的丰度如何受到诸如温度升高和除草剂等单一和组合胁迫因素的影响。总的来说,在受控条件下生长的这种合成周丛生物可以作为通过靶向操作进行理论测试的模型系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f545/9307524/4ab5a68abac6/41522_2022_322_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验