Suppr超能文献

用于高效一氧化碳分解和热化学能量转换的铁酸铜和氧化钴双层包覆大孔碳化硅衬底

Copper ferrite and cobalt oxide two-layer coated macroporous SiC substrate for efficient CO-splitting and thermochemical energy conversion.

作者信息

Guene Lougou Bachirou, Geng Boxi, Jiang Boshu, Zhang Hao, Sun Qiming, Shuai Yong, Qu Zhibin, Zhao Jiupeng, Wang Chi-Hwa

机构信息

School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineer8ing, Harbin Institute of Technology, Harbin 150001, China.

School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.

出版信息

J Colloid Interface Sci. 2022 Dec;627:516-531. doi: 10.1016/j.jcis.2022.07.057. Epub 2022 Jul 15.

Abstract

CO-splitting and thermochemical energy conversion effectiveness are still challenged by the selectivity of metal/metal oxide-based redox materials and associated chemical reaction constraints. This study proposed an interface/substrate engineering approach for improving CO-splitting and thermochemical energy conversion through CuFeO and CoO two-layer coating SiC. The newly prepared material reactive surface area available for gas-solid reactions is characterized by micro-pores CuFeO alloy easing inter-layer oxygen micro mass exchanges across a highly stable SiC-CoO layer. Through a thermogravimetry analysis, oxidation of the thermally activated oxygen carriers exhibited remarkably CO-splitting capacities with a total CO yield of 1919.33 µmol/g at 1300 °C. The further analysis of the material CO-splitting performance at the reactor scale resulted in 919.04 mL (788.94 µmol/g) of CO yield with an instantaneous CO production rate of 22.52 mL/min and chemical energy density of 223.37 kJ/kg at 1000 °C isothermal redox cycles. The reaction kinetic behavior indicated activation energy of 30.65 kJ/mol, which suggested faster CO activation and oxidation kinetic on SiC-CoO-CuFeO O-deficit surfaces. The underlying mechanism for the remarkable thermochemical performances was analyzed by combining experiment and density functional theory (DFT) calculations. The significance of exploiting the synergy between CuFeO and CoO layers and stoichiometric reaction characteristics provided fundamental insights useful for the theoretical modeling and practical application of the solar thermochemical process.

摘要

基于金属/金属氧化物的氧化还原材料的选择性以及相关化学反应限制,仍然对共分解和热化学能量转换效率构成挑战。本研究提出了一种界面/基底工程方法,通过在碳化硅(SiC)上涂覆CuFeO和CoO两层涂层来改善共分解和热化学能量转换。新制备的可用于气固反应的材料反应表面积的特征在于微孔CuFeO合金,它促进了跨高度稳定的SiC-CoO层的层间氧微质量交换。通过热重分析,热活化氧载体的氧化表现出显著的共分解能力,在1300℃时总CO产率为1919.33 μmol/g。在反应器规模下对材料的共分解性能进行进一步分析,在1000℃等温氧化还原循环中,CO产率为919.04 mL(788.94 μmol/g),瞬时CO生成速率为22.52 mL/min,化学能密度为223.37 kJ/kg。反应动力学行为表明活化能为30.65 kJ/mol,这表明在SiC-CoO-CuFeO氧缺陷表面上CO活化和氧化动力学更快。通过结合实验和密度泛函理论(DFT)计算,分析了显著热化学性能的潜在机制。利用CuFeO和CoO层之间的协同作用以及化学计量反应特性的重要性,为太阳能热化学过程的理论建模和实际应用提供了有用的基本见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验