Zong Teng, Shen Qianqian, Han Yujia, Ruan Chongyan, Liu Shu, Wang Chaojie, Tian Ming, Li Lin, Zhu Yanyan, Wang Xiaodong
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.
University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, Shijingshan District, China.
ChemSusChem. 2025 Jan 14;18(2):e202401295. doi: 10.1002/cssc.202401295. Epub 2024 Oct 18.
Solar thermochemical CO splitting using metal oxides is considered as a promising approach to produce solar fuels since it is capable to tap abundant sunlight directly and store solar energy in the renewable fuel. It remains a grand challenge to achieve highly efficient CO splitting at low temperature (<800 °C) due to insufficient activation of metal oxides for CO. Herein, the introduction of a small amount of Pt was found to be able to greatly increase the performance of CO splitting with the highest peak CO production rate of about 65 mL min g, CO productivity of about 53 mL g, nearly 100 % CO conversion and long-term stability for 0.5Pt/CeO, which exceeded most of the state-of-the-art transition metals-based oxides even at lower temperature (700 °C). This could be attributed to the addition of Pt leading to the formation of an interface (Pt-O-Ce) after CH reduction, which improved CO activation and dissociation due to beneficial breakage of C=O bond by the cooperation of Pt and oxygen vacancies in the interface.
使用金属氧化物的太阳能热化学CO分解被认为是一种有前景的太阳能燃料生产方法,因为它能够直接利用丰富的阳光并将太阳能存储在可再生燃料中。由于金属氧化物对CO的活化不足,在低温(<800°C)下实现高效的CO分解仍然是一个巨大的挑战。在此,发现引入少量的Pt能够极大地提高CO分解性能,对于0.5Pt/CeO,CO产生速率的最高峰值约为65 mL min g,CO生产率约为53 mL g,CO转化率接近100%且具有长期稳定性,即使在较低温度(700°C)下也超过了大多数基于过渡金属的先进氧化物。这可能归因于Pt的添加导致在CH还原后形成了一个界面(Pt-O-Ce),由于界面中Pt与氧空位的协同作用使C=O键发生有益断裂,从而改善了CO的活化和解离。