Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
Nucleic Acids Res. 2022 Aug 12;50(14):8168-8192. doi: 10.1093/nar/gkac596.
Nucleocapsid protein (N-protein) is required for multiple steps in betacoronaviruses replication. SARS-CoV-2-N-protein condenses with specific viral RNAs at particular temperatures making it a powerful model for deciphering RNA sequence specificity in condensates. We identify two separate and distinct double-stranded, RNA motifs (dsRNA stickers) that promote N-protein condensation. These dsRNA stickers are separately recognized by N-protein's two RNA binding domains (RBDs). RBD1 prefers structured RNA with sequences like the transcription-regulatory sequence (TRS). RBD2 prefers long stretches of dsRNA, independent of sequence. Thus, the two N-protein RBDs interact with distinct dsRNA stickers, and these interactions impart specific droplet physical properties that could support varied viral functions. Specifically, we find that addition of dsRNA lowers the condensation temperature dependent on RBD2 interactions and tunes translational repression. In contrast RBD1 sites are sequences critical for sub-genomic (sg) RNA generation and promote gRNA compression. The density of RBD1 binding motifs in proximity to TRS-L/B sequences is associated with levels of sub-genomic RNA generation. The switch to packaging is likely mediated by RBD1 interactions which generate particles that recapitulate the packaging unit of the virion. Thus, SARS-CoV-2 can achieve biochemical complexity, performing multiple functions in the same cytoplasm, with minimal protein components based on utilizing multiple distinct RNA motifs that control N-protein interactions.
核衣壳蛋白(N 蛋白)是β冠状病毒复制过程中多个步骤所必需的。SARS-CoV-2-N 蛋白在特定温度下与特定的病毒 RNA 凝聚,使其成为破译凝聚物中 RNA 序列特异性的有力模型。我们鉴定了两个独立且不同的双链 RNA 基序(dsRNA 标签),它们促进 N 蛋白的凝聚。这些 dsRNA 标签分别被 N 蛋白的两个 RNA 结合结构域(RBD)识别。RBD1 偏爱具有转录调节序列(TRS)等序列的结构 RNA。RBD2 偏爱长链 dsRNA,而不依赖于序列。因此,两个 N 蛋白的 RBD 与不同的 dsRNA 标签相互作用,这些相互作用赋予了特定的液滴物理特性,这些特性可能支持多种病毒功能。具体来说,我们发现添加 dsRNA 会降低依赖于 RBD2 相互作用的凝聚温度,并调节翻译抑制。相比之下,RBD1 位点是产生亚基因组(sg)RNA 所必需的序列,并促进 gRNA 压缩。RBD1 结合基序与 TRS-L/B 序列的接近度与亚基因组 RNA 产生的水平相关。包装的转变可能是由 RBD1 相互作用介导的,这些相互作用产生的颗粒再现了病毒粒子的包装单元。因此,SARS-CoV-2 可以在同一细胞质中实现生化复杂性,利用控制 N 蛋白相互作用的多个不同 RNA 基序来执行多种功能,而所需的蛋白质成分最少。