Suppr超能文献

一种混合的回归到基线填补方法,用于纳入 MAR 和 MNAR 缺失。

A hybrid return to baseline imputation method to incorporate MAR and MNAR dropout missingness.

机构信息

Data and Statistical Sciences, AbbVie Inc., North Chicago, IL 60064, USA.

出版信息

Contemp Clin Trials. 2022 Sep;120:106859. doi: 10.1016/j.cct.2022.106859. Epub 2022 Jul 21.

Abstract

Missing data are inevitable in longitudinal clinical trials due to intercurrent events (ICEs) such as treatment interruption or premature discontinuation for different reasons. Missing at random (MAR) assumption is usually unverifiable and sensitivity analyses are often requested under missing not at random (MNAR) assumption. Return to baseline (RTB) imputation is a commonly used MNAR method. In practice, not all dropout missingness can be assumed MNAR. For example, missingness or dropouts due to COVID-19 can be reasonably assumed MAR. Therefore, traditional RTB is not applicable when there is both MAR and MNAR dropout missingness. Here we propose a hybrid strategy for RTB imputation which can handle missing data due to MAR and MNAR dropouts at the same time. Standard multiple imputation approach is proposed and an analytic likelihood based approach is derived to improve efficiency.

摘要

由于并发事件(ICEs),如治疗中断或因不同原因提前停药,纵向临床试验中不可避免会出现缺失数据。缺失数据随机(MAR)假设通常是无法验证的,并且通常在缺失数据非随机(MNAR)假设下请求进行敏感性分析。返回基线(RTB)插补是一种常用的 MNAR 方法。在实践中,并非所有的缺失都可以假设为 MNAR。例如,由于 COVID-19 导致的缺失或脱落可以合理地假设为 MAR。因此,当存在 MAR 和 MNAR 缺失时,传统的 RTB 不适用。在这里,我们提出了一种 RTB 插补的混合策略,可以同时处理 MAR 和 MNAR 缺失数据。提出了标准的多重插补方法,并推导出基于分析似然的方法来提高效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验