Suppr超能文献

用于动物社交网络数据假设检验的排列检验:问题与潜在解决方案

Permutation tests for hypothesis testing with animal social network data: Problems and potential solutions.

作者信息

Farine Damien R, Carter Gerald G

机构信息

Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland.

Department of Collective Behavior Max Planck Institute of Animal Behavior Konstanz Germany.

出版信息

Methods Ecol Evol. 2022 Jan;13(1):144-156. doi: 10.1111/2041-210X.13741. Epub 2021 Oct 28.

Abstract

Permutation tests are widely used to test null hypotheses with animal social network data, but suffer from high rates of type I and II error when the permutations do not properly simulate the intended null hypothesis.Two common types of permutations each have limitations. Pre-network (or datastream) permutations can be used to control 'nuisance effects' like spatial, temporal or sampling biases, but only when the null hypothesis assumes random social structure. Node (or node-label) permutation tests can test null hypotheses that include nonrandom social structure, but only when nuisance effects do not shape the observed network.We demonstrate one possible solution addressing these limitations: using pre-network permutations to adjust the values for each node or edge before conducting a node permutation test. We conduct a range of simulations to estimate error rates caused by confounding effects of social or non-social structure in the raw data.Regressions on simulated datasets suggest that this 'double permutation' approach is less likely to produce elevated error rates relative to using only node permutations, pre-network permutations or node permutations with simple covariates, which all exhibit elevated type I errors under at least one set of simulated conditions. For example, in scenarios where type I error rates from pre-network permutation tests exceed 30%, the error rates from double permutation remain at 5%.The double permutation procedure provides one potential solution to issues arising from elevated type I and type II error rates when testing null hypotheses with social network data. We also discuss alternative approaches that can provide robust inference, including fitting mixed effects models, restricted node permutations, testing multiple null hypotheses and splitting large datasets to generate replicated networks. Finally, we highlight ways that uncertainty can be explicitly considered and carried through the analysis.

摘要

排列检验在动物社交网络数据的零假设检验中被广泛应用,但当排列不能正确模拟预期的零假设时,会出现较高的I型和II型错误率。两种常见的排列类型都有局限性。网络前(或数据流)排列可用于控制空间、时间或抽样偏差等“干扰效应”,但仅当零假设假设随机社会结构时适用。节点(或节点标签)排列检验可以检验包括非随机社会结构的零假设,但仅当干扰效应不影响观察到的网络时适用。我们展示了一种解决这些局限性的可能方法:在进行节点排列检验之前,使用网络前排列来调整每个节点或边的值。我们进行了一系列模拟,以估计原始数据中社会或非社会结构的混杂效应所导致的错误率。对模拟数据集的回归分析表明,相对于仅使用节点排列、网络前排列或带有简单协变量的节点排列,这种“双重排列”方法产生错误率升高的可能性较小,后几种方法在至少一组模拟条件下都表现出I型错误升高。例如,在网络前排列检验的I型错误率超过30%的情况下,双重排列的错误率仍保持在5%。双重排列程序为使用社交网络数据检验零假设时因I型和II型错误率升高而产生的问题提供了一种潜在解决方案。我们还讨论了可以提供稳健推断的替代方法,包括拟合混合效应模型、受限节点排列、检验多个零假设以及拆分大型数据集以生成复制网络。最后,我们强调了在分析过程中可以明确考虑和处理不确定性的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6477/9297917/26ecb47509f3/MEE3-13-144-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验