Suppr超能文献

基于改进YOLOv3模型和实例增强的灯光诱捕图像害虫检测

Detecting Pests From Light-Trapping Images Based on Improved YOLOv3 Model and Instance Augmentation.

作者信息

Lv Jiawei, Li Wenyong, Fan Mingyuan, Zheng Tengfei, Yang Zhankui, Chen Yaocong, He Guohuang, Yang Xinting, Liu Shuangyin, Sun Chuanheng

机构信息

National Engineering Research Center for Information Technology in Agriculture, Beijing, China.

National Engineering Laboratory for Agri-product Quality Traceability, Beijing, China.

出版信息

Front Plant Sci. 2022 Jul 7;13:939498. doi: 10.3389/fpls.2022.939498. eCollection 2022.

Abstract

Light traps have been widely used as effective tools to monitor multiple agricultural and forest insect pests simultaneously. However, the current detection methods of pests from light trapping images have several limitations, such as exhibiting extremely imbalanced class distribution, occlusion among multiple pest targets, and inter-species similarity. To address the problems, this study proposes an improved YOLOv3 model in combination with image enhancement to better detect crop pests in real agricultural environments. First, a dataset containing nine common maize pests is constructed after an image augmentation based on image cropping. Then, a linear transformation method is proposed to optimize the anchors generated by the k-means clustering algorithm, which can improve the matching accuracy between anchors and ground truths. In addition, two residual units are added to the second residual block of the original YOLOv3 network to obtain more information about the location of the underlying small targets, and one ResNet unit is used in the feature pyramid network structure to replace two DBL(Conv+BN+LeakyReLU) structures to enhance the reuse of pest features. Experiment results show that the mAP and mRecall of our proposed method are improved by 6.3% and 4.61%, respectively, compared with the original YOLOv3. The proposed method outperforms other state-of-the-art methods (SSD, Faster-rcnn, and YOLOv4), indicating that the proposed method achieves the best detection performance, which can provide an effective model for the realization of intelligent monitoring of maize pests.

摘要

诱虫灯已被广泛用作同时监测多种农业和森林害虫的有效工具。然而,目前从诱虫图像中检测害虫的方法存在一些局限性,例如类分布极度不平衡、多个害虫目标之间存在遮挡以及物种间相似性。为了解决这些问题,本研究提出了一种改进的YOLOv3模型,并结合图像增强技术,以便在真实农业环境中更好地检测作物害虫。首先,在基于图像裁剪的图像增强后,构建了一个包含九种常见玉米害虫的数据集。然后,提出了一种线性变换方法来优化由k均值聚类算法生成的锚框,这可以提高锚框与真实值之间的匹配精度。此外,在原始YOLOv3网络的第二个残差块中添加了两个残差单元,以获取更多关于潜在小目标位置的信息,并在特征金字塔网络结构中使用一个ResNet单元来替换两个DBL(卷积+批归一化+泄漏整流线性单元)结构,以增强害虫特征的重用。实验结果表明,与原始YOLOv3相比,我们提出的方法的平均精度均值(mAP)和平均召回率(mRecall)分别提高了 6.3%和 4.61%。所提出的方法优于其他现有最先进的方法(SSD、Faster-rcnn和YOLOv4),表明所提出的方法实现了最佳检测性能,可为实现玉米害虫智能监测提供有效模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abe4/9301456/6be4709cd73a/fpls-13-939498-g0001.jpg

相似文献

1
Detecting Pests From Light-Trapping Images Based on Improved YOLOv3 Model and Instance Augmentation.
Front Plant Sci. 2022 Jul 7;13:939498. doi: 10.3389/fpls.2022.939498. eCollection 2022.
2
Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting.
Front Plant Sci. 2022 Oct 25;13:973985. doi: 10.3389/fpls.2022.973985. eCollection 2022.
3
AgriPest-YOLO: A rapid light-trap agricultural pest detection method based on deep learning.
Front Plant Sci. 2022 Dec 16;13:1079384. doi: 10.3389/fpls.2022.1079384. eCollection 2022.
4
Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models.
BMC Bioinformatics. 2021 Mar 8;22(1):112. doi: 10.1186/s12859-021-04036-4.
5
Convolutional Rebalancing Network for the Classification of Large Imbalanced Rice Pest and Disease Datasets in the Field.
Front Plant Sci. 2021 Jul 5;12:671134. doi: 10.3389/fpls.2021.671134. eCollection 2021.
6
Early real-time detection algorithm of tomato diseases and pests in the natural environment.
Plant Methods. 2021 Apr 23;17(1):43. doi: 10.1186/s13007-021-00745-2.
9
Intelligent Monitoring System of Migratory Pests Based on Searchlight Trap and Machine Vision.
Front Plant Sci. 2022 Jun 20;13:897739. doi: 10.3389/fpls.2022.897739. eCollection 2022.
10
MSR-RCNN: A Multi-Class Crop Pest Detection Network Based on a Multi-Scale Super-Resolution Feature Enhancement Module.
Front Plant Sci. 2022 Mar 3;13:810546. doi: 10.3389/fpls.2022.810546. eCollection 2022.

引用本文的文献

1
SRNet-YOLO: A model for detecting tiny and very tiny pests in cotton fields based on super-resolution reconstruction.
Front Plant Sci. 2024 Aug 9;15:1416940. doi: 10.3389/fpls.2024.1416940. eCollection 2024.
2
New trends in detection of harmful insects and pests in modern agriculture using artificial neural networks. a review.
Front Plant Sci. 2023 Nov 2;14:1268167. doi: 10.3389/fpls.2023.1268167. eCollection 2023.
3
Recognition of terminal buds of densely-planted Chinese fir seedlings using improved YOLOv5 by integrating attention mechanism.
Front Plant Sci. 2022 Oct 10;13:991929. doi: 10.3389/fpls.2022.991929. eCollection 2022.

本文引用的文献

1
Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network.
Front Plant Sci. 2020 Jun 16;11:898. doi: 10.3389/fpls.2020.00898. eCollection 2020.
2
An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: Alternatives in major cropping systems.
Environ Sci Pollut Res Int. 2020 Aug;27(24):29867-29899. doi: 10.1007/s11356-020-09279-x. Epub 2020 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验