文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用改进的 YOLOV3 和 YOLOV4 模型检测厚血涂片显微镜图像中的疟原虫。

Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models.

机构信息

Faculty of Electrical and Computer Engineering, Jimma Institute of Technology, Jimma University, 378, Jimma, Ethiopia.

School of Biomedical Engineering, Jimma Institute of Technology, Jimma University, 378, Jimma, Ethiopia.

出版信息

BMC Bioinformatics. 2021 Mar 8;22(1):112. doi: 10.1186/s12859-021-04036-4.


DOI:10.1186/s12859-021-04036-4
PMID:33685401
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7938584/
Abstract

BACKGROUND: Manual microscopic examination of Leishman/Giemsa stained thin and thick blood smear is still the "gold standard" for malaria diagnosis. One of the drawbacks of this method is that its accuracy, consistency, and diagnosis speed depend on microscopists' diagnostic and technical skills. It is difficult to get highly skilled microscopists in remote areas of developing countries. To alleviate this problem, in this paper, we propose to investigate state-of-the-art one-stage and two-stage object detection algorithms for automated malaria parasite screening from microscopic image of thick blood slides. RESULTS: YOLOV3 and YOLOV4 models, which are state-of-the-art object detectors in accuracy and speed, are not optimized for detecting small objects such as malaria parasites in microscopic images. We modify these models by increasing feature scale and adding more detection layers to enhance their capability of detecting small objects without notably decreasing detection speed. We propose one modified YOLOV4 model, called YOLOV4-MOD and two modified models of YOLOV3, which are called YOLOV3-MOD1 and YOLOV3-MOD2. Besides, new anchor box sizes are generated using K-means clustering algorithm to exploit the potential of these models in small object detection. The performance of the modified YOLOV3 and YOLOV4 models were evaluated on a publicly available malaria dataset. These models have achieved state-of-the-art accuracy by exceeding performance of their original versions, Faster R-CNN, and SSD in terms of mean average precision (mAP), recall, precision, F1 score, and average IOU. YOLOV4-MOD has achieved the best detection accuracy among all the other models with a mAP of 96.32%. YOLOV3-MOD2 and YOLOV3-MOD1 have achieved mAP of 96.14% and 95.46%, respectively. CONCLUSIONS: The experimental results of this study demonstrate that performance of modified YOLOV3 and YOLOV4 models are highly promising for detecting malaria parasites from images captured by a smartphone camera over the microscope eyepiece. The proposed system is suitable for deployment in low-resource setting areas.

摘要

背景:使用 Leishman/Giemsa 染色的薄血涂片和厚血涂片进行手动显微镜检查仍然是疟疾诊断的“金标准”。这种方法的一个缺点是,其准确性、一致性和诊断速度取决于显微镜检查者的诊断和技术技能。在发展中国家的偏远地区,很难获得技术熟练的显微镜检查者。为了解决这个问题,在本文中,我们提出研究用于从厚血涂片的显微镜图像中自动筛选疟原虫的一阶段和两阶段目标检测算法的最新进展。

结果:YOLOV3 和 YOLOV4 模型是准确性和速度方面的最新目标检测算法,但它们没有针对在显微镜图像中检测小目标(如疟原虫)进行优化。我们通过增加特征尺度和添加更多检测层来修改这些模型,以在不显著降低检测速度的情况下增强检测小目标的能力。我们提出了一个修改后的 YOLOV4 模型,称为 YOLOV4-MOD,以及两个修改后的 YOLOV3 模型,分别称为 YOLOV3-MOD1 和 YOLOV3-MOD2。此外,使用 K-means 聚类算法生成新的锚框大小,以利用这些模型在小目标检测方面的潜力。修改后的 YOLOV3 和 YOLOV4 模型在公开的疟疾数据集上进行了评估。这些模型在平均精度 (mAP)、召回率、精度、F1 分数和平均 IOU 方面超过了其原始版本、Faster R-CNN 和 SSD 的性能,实现了最先进的精度。YOLOV4-MOD 在所有其他模型中取得了最佳的检测准确性,mAP 为 96.32%。YOLOV3-MOD2 和 YOLOV3-MOD1 的 mAP 分别为 96.14%和 95.46%。

结论:本研究的实验结果表明,修改后的 YOLOV3 和 YOLOV4 模型的性能非常有希望用于从智能手机摄像头在显微镜目镜上拍摄的图像中检测疟原虫。所提出的系统适用于部署在资源有限的地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d76/7938584/f27f3af72ff0/12859_2021_4036_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d76/7938584/e7f0806eb670/12859_2021_4036_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d76/7938584/1bab5b8c10c5/12859_2021_4036_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d76/7938584/3aa6131da7fe/12859_2021_4036_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d76/7938584/fca5d0cd1df6/12859_2021_4036_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d76/7938584/a1a47dfa6f70/12859_2021_4036_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d76/7938584/a709499258f3/12859_2021_4036_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d76/7938584/f27f3af72ff0/12859_2021_4036_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d76/7938584/e7f0806eb670/12859_2021_4036_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d76/7938584/1bab5b8c10c5/12859_2021_4036_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d76/7938584/3aa6131da7fe/12859_2021_4036_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d76/7938584/fca5d0cd1df6/12859_2021_4036_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d76/7938584/a1a47dfa6f70/12859_2021_4036_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d76/7938584/a709499258f3/12859_2021_4036_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d76/7938584/f27f3af72ff0/12859_2021_4036_Fig7_HTML.jpg

相似文献

[1]
Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models.

BMC Bioinformatics. 2021-3-8

[2]
Tile-based microscopic image processing for malaria screening using a deep learning approach.

BMC Med Imaging. 2023-3-22

[3]
Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin.

Sensors (Basel). 2022-8-18

[4]
An automated malaria cells detection from thin blood smear images using deep learning.

Trop Biomed. 2023-6-1

[5]
Real-time Malaria Parasite Screening in Thick Blood Smears for Low-Resource Setting.

J Digit Imaging. 2020-6

[6]
Comparative analysis of computer vision algorithms for the real-time detection of digital dermatitis in dairy cows.

Prev Vet Med. 2024-8

[7]
An optimised YOLOv4 deep learning model for efficient malarial cell detection in thin blood smear images.

Parasit Vectors. 2024-4-16

[8]
An automatic device for detection and classification of malaria parasite species in thick blood film.

BMC Bioinformatics. 2012-12-13

[9]
Automatic patient-level recognition of four species on thin blood smear by a real-time detection transformer (RT-DETR) object detection algorithm: a proof-of-concept and evaluation.

Microbiol Spectr. 2024-2-6

[10]
Automatic recognition of parasitic products in stool examination using object detection approach.

PeerJ Comput Sci. 2022-8-17

引用本文的文献

[1]
Stain-free artificial intelligence-assisted light microscopy for the identification of blood cells in microfluidic flow.

Front Bioinform. 2025-8-14

[2]
Hybrid Capsule Network for precise and interpretable detection of malaria parasites in blood smear images.

Front Cell Infect Microbiol. 2025-8-8

[3]
A 5G network based conceptual framework for real-time malaria parasite detection from thick and thin blood smear slides using modified YOLOv5 model.

Digit Health. 2025-2-21

[4]
Deep learning-based malaria parasite detection: convolutional neural networks model for accurate species identification of Plasmodium falciparum and Plasmodium vivax.

Sci Rep. 2025-1-30

[5]
Deep learning-based object detection algorithms in medical imaging: Systematic review.

Heliyon. 2024-12-11

[6]
A lightweight deep-learning model for parasite egg detection in microscopy images.

Parasit Vectors. 2024-11-6

[7]
Development of an automated artificial intelligence-based system for urogenital schistosomiasis diagnosis using digital image analysis techniques and a robotized microscope.

PLoS Negl Trop Dis. 2024-11

[8]
Advances in Malaria Diagnostic Methods in Resource-Limited Settings: A Systematic Review.

Trop Med Infect Dis. 2024-8-23

[9]
The Impact of Artificial Intelligence on Microbial Diagnosis.

Microorganisms. 2024-5-23

[10]
A deep learning-based model for detecting Leishmania amastigotes in microscopic slides: a new approach to telemedicine.

BMC Infect Dis. 2024-6-1

本文引用的文献

[1]
Applying Faster R-CNN for Object Detection on Malaria Images.

Conf Comput Vis Pattern Recognit Workshops. 2017-7

[2]
Colonic Polyp Detection in Endoscopic Videos With Single Shot Detection Based Deep Convolutional Neural Network.

IEEE Access. 2019

[3]
Real-time Malaria Parasite Screening in Thick Blood Smears for Low-Resource Setting.

J Digit Imaging. 2020-6

[4]
White blood cells detection and classification based on regional convolutional neural networks.

Med Hypotheses. 2020-2

[5]
Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears.

IEEE J Biomed Health Inform. 2020-5

[6]
Skin Lesion Segmentation in Dermoscopic Images with Combination of YOLO and GrabCut Algorithm.

Diagnostics (Basel). 2019-7-10

[7]
Malaria parasite detection and cell counting for human and mouse using thin blood smear microscopy.

J Med Imaging (Bellingham). 2018-10

[8]
Automated microscopy for routine malaria diagnosis: a field comparison on Giemsa-stained blood films in Peru.

Malar J. 2018-9-25

[9]
Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT.

AJNR Am J Neuroradiol. 2018-7-26

[10]
Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images.

PeerJ. 2018-4-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索