Suppr超能文献

DNA条形码竞争性克隆起始细胞分析揭示了癌症异种移植模型中转移生长的新特征。

DNA barcoded competitive clone-initiating cell analysis reveals novel features of metastatic growth in a cancer xenograft model.

作者信息

Aalam Syed Mohammed Musheer, Tang Xiaojia, Song Jianning, Ray Upasana, Russell Stephen J, Weroha S John, Bakkum-Gamez Jamie, Shridhar Viji, Sherman Mark E, Eaves Connie J, Knapp David J H F, Kalari Krishna R, Kannan Nagarajan

机构信息

Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.

Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.

出版信息

NAR Cancer. 2022 Jul 22;4(3):zcac022. doi: 10.1093/narcan/zcac022. eCollection 2022 Sep.

Abstract

A problematic feature of many human cancers is a lack of understanding of mechanisms controlling organ-specific patterns of metastasis, despite recent progress in identifying many mutations and transcriptional programs shown to confer this potential. To address this gap, we developed a methodology that enables different aspects of the metastatic process to be comprehensively characterized at a clonal resolution. Our approach exploits the application of a computational pipeline to analyze and visualize clonal data obtained from transplant experiments in which a cellular DNA barcoding strategy is used to distinguish the separate clonal contributions of two or more competing cell populations. To illustrate the power of this methodology, we demonstrate its ability to discriminate the metastatic behavior in immunodeficient mice of a well-established human metastatic cancer cell line and its co-transplanted knockdown derivative. We also show how the use of machine learning to quantify clone-initiating cell (CIC) numbers and their subsequent metastatic progeny generated in different sites can reveal previously unknown relationships between different cellular genotypes and their initial sites of implantation with their subsequent respective dissemination patterns. These findings underscore the potential of such combined genomic and computational methodologies to identify new clonally-relevant drivers of site-specific patterns of metastasis.

摘要

许多人类癌症存在一个问题,即尽管在识别许多已显示具有转移潜能的突变和转录程序方面取得了进展,但对控制器官特异性转移模式的机制仍缺乏了解。为了填补这一空白,我们开发了一种方法,能够以克隆分辨率全面表征转移过程的不同方面。我们的方法利用了一个计算流程来分析和可视化从移植实验中获得的克隆数据,在该实验中,细胞DNA条形码策略用于区分两个或更多竞争细胞群体的单独克隆贡献。为了说明这种方法的强大功能,我们展示了它区分一种成熟的人类转移性癌细胞系及其共移植的敲低衍生物在免疫缺陷小鼠中的转移行为的能力。我们还展示了如何使用机器学习来量化克隆起始细胞(CIC)的数量及其在不同部位产生的后续转移后代,这可以揭示不同细胞基因型与其初始植入部位及其后续各自扩散模式之间以前未知的关系。这些发现强调了这种基因组和计算方法相结合在识别新的与克隆相关的位点特异性转移模式驱动因素方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad3b/9303272/fc43679fb13e/zcac022figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验