Goetting Isabell, Larafa Safa, Eul Katharina, Kunin Mikhail, Jakob Burkhard, Matschke Johann, Jendrossek Verena
Institute of Cell Biology (Cancer Research), University Hospital Essen, Essen, Germany.
Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
Front Oncol. 2022 Jul 8;12:920017. doi: 10.3389/fonc.2022.920017. eCollection 2022.
Aberrant activation of the phosphatidyl-inositol-3-kinase/protein kinase B (AKT) pathway has clinical relevance to radiation resistance, but the underlying mechanisms are incompletely understood. Protection against reactive oxygen species (ROS) plays an emerging role in the regulation of cell survival upon irradiation. AKT-dependent signaling participates in the regulation of cellular antioxidant defense. Here, we were interested to explore a yet unknown role of aberrant activation of AKT in regulating antioxidant defense in response to IR and associated radiation resistance. We combined genetic and pharmacologic approaches to study how aberrant activation of AKT impacts cell metabolism, antioxidant defense, and radiosensitivity. Therefore, we used TRAMPC1 (TrC1) prostate cancer cells overexpressing the clinically relevant AKT-variant AKT-E17K with increased AKT activity or wildtype AKT (AKT-WT) and analyzed the consequences of direct AKT inhibition (MK2206) and inhibition of AKT-dependent metabolic enzymes on the levels of cellular ROS, antioxidant capacity, metabolic state, short-term and long-term survival without and with irradiation. TrC1 cells expressing the clinically relevant AKT1-E17K variant were characterized by improved antioxidant defense compared to TrC1 AKT-WT cells and this was associated with increased radiation resistance. The underlying mechanisms involved AKT-dependent direct and indirect regulation of cellular levels of reduced glutathione (GSH). Pharmacologic inhibition of specific AKT-dependent metabolic enzymes supporting defense against oxidative stress, e.g., inhibition of glutathione synthase and glutathione reductase, improved eradication of clonogenic tumor cells, particularly of TrC1 cells overexpressing AKT-E17K. We conclude that improved capacity of TrC1 AKT-E17K cells to balance antioxidant defense with provision of energy and other metabolites upon irradiation compared to TrC1 AKT-WT cells contributes to their increased radiation resistance. Our findings on the importance of glutathione synthesis and glutathione regeneration for radiation resistance of TrC1 AKT-E17K cells offer novel perspectives for improving radiosensitivity in cancer cells with aberrant AKT activity by combining IR with inhibitors targeting AKT-dependent regulation of GSH provision.
磷脂酰肌醇-3-激酶/蛋白激酶B(AKT)信号通路的异常激活与辐射抗性具有临床相关性,但其潜在机制尚未完全明确。抵御活性氧(ROS)在辐射后细胞存活的调控中发挥着越来越重要的作用。AKT依赖的信号传导参与细胞抗氧化防御的调节。在此,我们旨在探究AKT异常激活在调节辐射诱导的抗氧化防御及相关辐射抗性中尚未明确的作用。我们结合遗传学和药理学方法,研究AKT异常激活如何影响细胞代谢、抗氧化防御和放射敏感性。因此,我们使用过表达具有临床相关性的AKT变异体AKT-E17K(AKT活性增加)或野生型AKT(AKT-WT)的TRAMPC1(TrC1)前列腺癌细胞,分析直接抑制AKT(MK2206)以及抑制AKT依赖的代谢酶对细胞ROS水平、抗氧化能力、代谢状态、有无辐射情况下的短期和长期存活的影响。与TrC1 AKT-WT细胞相比,表达具有临床相关性的AKT1-E17K变异体的TrC1细胞具有更强的抗氧化防御能力,这与辐射抗性增加相关。其潜在机制涉及AKT对细胞内还原型谷胱甘肽(GSH)水平的直接和间接调控。对支持抗氧化应激防御的特定AKT依赖的代谢酶进行药理学抑制,例如抑制谷胱甘肽合成酶和谷胱甘肽还原酶,可提高对克隆形成肿瘤细胞的清除能力,尤其是对过表达AKT-E17K的TrC1细胞。我们得出结论,与TrC1 AKT-WT细胞相比,TrC1 AKT-E17K细胞在辐射后具有更强的能力来平衡抗氧化防御与能量及其他代谢物的供应,这有助于其辐射抗性增加。我们关于谷胱甘肽合成和谷胱甘肽再生对TrC1 AKT-E17K细胞辐射抗性重要性的研究结果,为通过联合辐射与靶向AKT依赖的GSH供应调节的抑制剂来提高AKT活性异常的癌细胞的放射敏感性提供了新的视角。