Krysztofiak Adam, Szymonowicz Klaudia, Hlouschek Julian, Xiang Kexu, Waterkamp Christoph, Larafa Safa, Goetting Isabell, Vega-Rubin-de-Celis Silvia, Theiss Carsten, Matschke Veronika, Hoffmann Daniel, Jendrossek Verena, Matschke Johann
Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
Bioinformatics and Computational Biophysics, University of Duisburg-Essen, 45117 Essen, Germany.
iScience. 2021 Oct 28;24(11):103366. doi: 10.1016/j.isci.2021.103366. eCollection 2021 Nov 19.
Cancer bioenergetics fuel processes necessary to maintain viability and growth under stress conditions. We hypothesized that cancer metabolism supports the repair of radiation-induced DNA double-stranded breaks (DSBs). We combined the systematic collection of metabolic and radiobiological data from a panel of irradiated cancer cell lines with mathematical modeling and identified a common metabolic response with impact on the DSB repair kinetics, including a mitochondrial shutdown followed by compensatory glycolysis and resumption of mitochondrial function. Combining ionizing radiation (IR) with inhibitors of the compensatory glycolysis or mitochondrial respiratory chain slowed mitochondrial recovery and DNA repair kinetics, offering an opportunity for therapeutic intervention. Mathematical modeling allowed us to generate new hypotheses on general and individual mechanisms of the radiation response with relevance to DNA repair and on metabolic vulnerabilities induced by cancer radiotherapy. These discoveries will guide future mechanistic studies for the discovery of metabolic targets for overcoming intrinsic or therapy-induced radioresistance.
癌症生物能量学为在应激条件下维持生存能力和生长所必需的过程提供燃料。我们假设癌症代谢支持辐射诱导的DNA双链断裂(DSB)的修复。我们将来自一组受辐照癌细胞系的代谢和放射生物学数据的系统收集与数学建模相结合,并确定了一种对DSB修复动力学有影响的共同代谢反应,包括线粒体关闭,随后是代偿性糖酵解和线粒体功能的恢复。将电离辐射(IR)与代偿性糖酵解或线粒体呼吸链抑制剂联合使用会减缓线粒体恢复和DNA修复动力学,为治疗干预提供了机会。数学建模使我们能够就与DNA修复相关的辐射反应的一般和个体机制以及癌症放疗诱导的代谢脆弱性产生新的假设。这些发现将指导未来的机制研究,以发现克服内在或治疗诱导的放射抗性的代谢靶点。