Suppr超能文献

自适应规则模型中基于项目效用的规则排序方法。

Rule-ranking method based on item utility in adaptive rule model.

作者信息

Hikmawati Erna, Maulidevi Nur Ulfa, Surendro Kridanto

机构信息

Doctoral Program of Electrical Engineering and Informatics, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia.

School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Jawa Barat, Indonesia.

出版信息

PeerJ Comput Sci. 2022 Jun 28;8:e1013. doi: 10.7717/peerj-cs.1013. eCollection 2022.

Abstract

BACKGROUND

Decision-making is an important part of most human activities regardless of their daily activities, profession, or political inclination. Some decisions are relatively simple specifically when the consequences are insignificant while others can be very complex and have significant effects. Real-life decision problems generally involve several conflicting points of view (criteria) needed to be considered and this is the reason recent decision-making processes are usually supported by data as indicated by different data mining techniques. Data mining is the process of extracting data to obtain useful information and a promising and widely applied method is association rule mining which has the ability to identify interesting relationships between sets of items in a dataset and predict the associative behavior for new data. However, the number of rules generated in association rules can be very large, thereby making the exploitation process difficult. This means it is necessary to prioritize the selection of more valuable and relevant rules.

METHODS

Therefore, this study proposes a method to rank rules based on the lift ratio value calculated from the frequency and utility of the item. The three main functions in proposed method are mining of association rules from different databases (in terms of sources, characteristics, and attributes), automatic threshold value determination process, and prioritization of the rules produced.

RESULTS

Experiments conducted on six datasets showed that the number of rules generated by the adaptive rule model is higher and sorted from the largest lift ratio value compared to the apriori algorithm.

摘要

背景

决策是大多数人类活动的重要组成部分,无论其日常活动、职业或政治倾向如何。有些决策相对简单,特别是当后果微不足道时,而有些决策可能非常复杂且具有重大影响。现实生活中的决策问题通常涉及需要考虑的几个相互冲突的观点(标准),这就是为什么最近的决策过程通常由不同数据挖掘技术所指示的数据来支持。数据挖掘是提取数据以获得有用信息的过程,一种有前途且广泛应用的方法是关联规则挖掘,它能够识别数据集中项目集之间有趣的关系,并预测新数据的关联行为。然而,关联规则中生成的规则数量可能非常大,从而使利用过程变得困难。这意味着有必要对更有价值和相关性更高的规则进行优先级选择。

方法

因此,本研究提出了一种基于从项目的频率和效用计算得出的提升率值对规则进行排序的方法。所提出方法中的三个主要功能是从不同数据库(在来源、特征和属性方面)挖掘关联规则、自动阈值确定过程以及对生成的规则进行优先级排序。

结果

在六个数据集上进行的实验表明,与先验算法相比,自适应规则模型生成的规则数量更多,并且从最大提升率值开始排序。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验