Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias Ave, Eugenio Garza Sada 2501 Sur Col, Tecnológico C.P. 64849, Monterrey, Nuevo Leon, Mexico.
Comput Intell Neurosci. 2022 Jul 15;2022:1279945. doi: 10.1155/2022/1279945. eCollection 2022.
Security has become a critical issue for complex and expensive systems and day-to-day situations. In this regard, the analysis of surveillance cameras is a critical issue usually restricted to the number of people devoted to such a task, their knowledge and judgment. Nonetheless, different approaches have arisen to automate this task in recent years. These approaches are mainly based on machine learning and benefit from developing neural networks capable of extracting underlying information from input videos. Despite how competent those networks have proved to be, developers must face the challenging task of defining both the architecture and hyperparameters that allow such networks to work adequately and optimize the use of computational resources. In short, this work proposes a model that generates, through a genetic algorithm, neural networks for behavior classification within videos. Two types of neural networks evolved as part of this work, shallow and deep, which are structured on dense and 3D convolutional layers. Each network requires a particular type of input data: the evolution of the pose of people in the video and video sequences, respectively. Shallow neural networks use a direct encoding approach to map each part of the chromosome into a phenotype. In contrast, deep neural networks use indirect encoding, blueprints representing entire networks, and modules to depict layers and their connections. Our approach obtained relevant results when tested on the Kranok-NV dataset and evaluated with standard metrics used for similar classification tasks.
安全已成为复杂且昂贵系统以及日常情况的关键问题。在这方面,监控摄像机的分析通常受到用于此项任务的人员数量、他们的知识和判断力的限制,是一个关键问题。然而,近年来已经出现了不同的方法来实现这项任务的自动化。这些方法主要基于机器学习,并受益于开发能够从输入视频中提取潜在信息的神经网络。尽管这些网络已经被证明非常有能力,但开发人员必须面对定义架构和超参数的具有挑战性的任务,这些参数允许这些网络正常工作并优化计算资源的使用。简而言之,这项工作提出了一种通过遗传算法生成用于视频内行为分类的神经网络的模型。作为这项工作的一部分进化出两种类型的神经网络,浅层和深层,它们分别基于密集和 3D 卷积层构建。每个网络都需要特定类型的输入数据:视频中人的姿势的演变和视频序列。浅层神经网络使用直接编码方法将染色体的每一部分映射到表型上。相比之下,深层神经网络使用间接编码,蓝图代表整个网络,以及模块来描绘层及其连接。我们的方法在 Kranok-NV 数据集上进行测试并使用类似分类任务的标准指标进行评估时,获得了相关结果。