Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
Institute of Resource Ecology, Biophysics Department, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
Langmuir. 2022 Aug 2;38(30):9257-9265. doi: 10.1021/acs.langmuir.2c01016. Epub 2022 Jul 23.
Bacterial colonization of abiotic surfaces such as those of medical implants, membrane filters, and everyday household items is a process of tremendous importance for public health. Bacteria use adhesive cell surface structures called adhesins to establish contact with abiotic surfaces. Among them, protein filaments called type IV pili are particularly important and found in many Gram-negative pathogens such as . Understanding the interaction of such adhesin proteins with different abiotic surfaces at the molecular level thus represents a fundamental prerequisite for impeding bacterial colonization and preventing the spread of infectious diseases. In this work, we investigate the interaction of a synthetic adhesin-like peptide, PAK128-144ox, derived from the type IV pilus of with hydrophilic and hydrophobic self-assembled monolayers (SAMs). Using a combination of molecular dynamics (MD) simulations, quartz crystal microbalance with dissipation monitoring (QCM-D), and spectroscopic investigations, we find that PAK128-144ox has a higher affinity for hydrophobic than for hydrophilic surfaces. Additionally, PAK128-144ox adsorption on the hydrophobic SAM is furthermore accompanied by a strong increase in α-helix content. Our results show a clear influence of surface hydrophobicity and further indicate that PAK128-144ox adsorption on the hydrophobic surface is enthalpically favored, while on the hydrophilic surface, entropic contributions are more significant. However, our spectroscopic investigations also suggest aggregation of the peptide under the employed experimental conditions, which is not considered in the MD simulations and should be addressed in more detail in future studies.
生物非生命表面(如医学植入物、膜过滤器和日常家用物品)的细菌定殖过程对公共卫生具有重要意义。细菌利用称为黏附素的细胞表面结构与生物非生命表面建立接触。其中,称为 IV 型菌毛的蛋白质丝在许多革兰氏阴性病原体中尤为重要,如 。因此,从分子水平上了解这些黏附素蛋白与不同生物非生命表面的相互作用,是阻碍细菌定殖和预防传染病传播的基本前提。在这项工作中,我们研究了源自 型 IV 菌毛的合成类似黏附素的肽 PAK128-144ox 与亲水性和疏水性自组装单层(SAM)的相互作用。我们结合使用分子动力学(MD)模拟、石英晶体微天平耗散监测(QCM-D)和光谱研究,发现 PAK128-144ox 对疏水性表面的亲和力高于亲水性表面。此外,PAK128-144ox 在疏水性 SAM 上的吸附还伴随着α-螺旋含量的强烈增加。我们的结果表明表面疏水性有明显影响,并进一步表明 PAK128-144ox 在疏水性表面上的吸附是焓有利的,而在亲水性表面上,熵贡献更为显著。然而,我们的光谱研究还表明,在研究中采用的实验条件下,肽发生了聚集,而这在 MD 模拟中并未考虑到,应该在未来的研究中进一步解决。