Ozboyaci Musa, Kokh Daria B, Corni Stefano, Wade Rebecca C
Heidelberg Institute for Theoretical Studies (HITS),Schloss-Wolfsbrunnenweg 35,69118 Heidelberg,Germany.
Centro S3, CNR Instituto Nanoscienze,via Campi 213/a,41125 Modena,Italy.
Q Rev Biophys. 2016;49:e4. doi: 10.1017/S0033583515000256.
Understanding protein-inorganic surface interactions is central to the rational design of new tools in biomaterial sciences, nanobiotechnology and nanomedicine. Although a significant amount of experimental research on protein adsorption onto solid substrates has been reported, many aspects of the recognition and interaction mechanisms of biomolecules and inorganic surfaces are still unclear. Theoretical modeling and simulations provide complementary approaches for experimental studies, and they have been applied for exploring protein-surface binding mechanisms, the determinants of binding specificity towards different surfaces, as well as the thermodynamics and kinetics of adsorption. Although the general computational approaches employed to study the dynamics of proteins and materials are similar, the models and force-fields (FFs) used for describing the physical properties and interactions of material surfaces and biological molecules differ. In particular, FF and water models designed for use in biomolecular simulations are often not directly transferable to surface simulations and vice versa. The adsorption events span a wide range of time- and length-scales that vary from nanoseconds to days, and from nanometers to micrometers, respectively, rendering the use of multi-scale approaches unavoidable. Further, changes in the atomic structure of material surfaces that can lead to surface reconstruction, and in the structure of proteins that can result in complete denaturation of the adsorbed molecules, can create many intermediate structural and energetic states that complicate sampling. In this review, we address the challenges posed to theoretical and computational methods in achieving accurate descriptions of the physical, chemical and mechanical properties of protein-surface systems. In this context, we discuss the applicability of different modeling and simulation techniques ranging from quantum mechanics through all-atom molecular mechanics to coarse-grained approaches. We examine uses of different sampling methods, as well as free energy calculations. Furthermore, we review computational studies of protein-surface interactions and discuss the successes and limitations of current approaches.
理解蛋白质与无机表面的相互作用是生物材料科学、纳米生物技术和纳米医学中合理设计新工具的核心。尽管已经报道了大量关于蛋白质吸附到固体基质上的实验研究,但生物分子与无机表面的识别和相互作用机制的许多方面仍不清楚。理论建模和模拟为实验研究提供了补充方法,它们已被用于探索蛋白质-表面结合机制、对不同表面结合特异性的决定因素以及吸附的热力学和动力学。虽然用于研究蛋白质和材料动力学的一般计算方法相似,但用于描述材料表面和生物分子的物理性质及相互作用的模型和力场(FFs)不同。特别是,设计用于生物分子模拟的FF和水模型通常不能直接转移到表面模拟,反之亦然。吸附事件跨越从纳秒到天、从纳米到微米的广泛时间和长度尺度,这使得使用多尺度方法不可避免。此外,材料表面原子结构的变化(可导致表面重构)以及蛋白质结构的变化(可导致吸附分子完全变性)可产生许多中间结构和能量状态,使采样变得复杂。在这篇综述中,我们阐述了理论和计算方法在准确描述蛋白质-表面系统的物理、化学和机械性质方面所面临的挑战。在此背景下,我们讨论了从量子力学、全原子分子力学到粗粒度方法等不同建模和模拟技术的适用性。我们研究了不同采样方法以及自由能计算的用途。此外,我们综述了蛋白质-表面相互作用的计算研究,并讨论了当前方法的成功与局限。