Ye Qiaojue, Xu Degao, Cai Biao, Lu Jianting, Yi Huaxin, Ma Churong, Zheng Zhaoqiang, Yao Jiandong, Ouyang Gang, Yang Guowei
State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China.
Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China.
Mater Horiz. 2022 Aug 30;9(9):2364-2375. doi: 10.1039/d2mh00612j.
Low light absorption and limited carrier lifetime are critical obstacles inhibiting further performance improvement of 2D layered material (2DLM) based photodetectors, while scalable fabrication is an ongoing challenge prior to commercialization from the lab to market. Herein, wafer-scale SnS/ZIS hierarchical nanofilms, where out-of-plane SnS (O-SnS) is modified onto in-plane ZIS (I-ZIS), have been achieved by pulsed-laser deposition. The derived O-SnS/I-ZIS photodetector exhibits markedly boosted sensitivity as compared to a pristine ZIS device. The synergy of multiple functionalities contributes to the dramatic improvement, including the pronounced light-trapping effect of O-SnS by multiple scattering, the high-efficiency spatial separation of photogenerated electron-hole pairs by a type-II staggered band alignment and the promoted carrier transport enabled by the tailored electronic structure of ZIS. Of note, the unique architecture of O-SnS/I-ZIS can considerably expedite the carrier dynamics, where O-SnS promotes the electron transfer from SnS to ZIS whilst the I-ZIS enables high-speed electron circulation. In addition, the interlayer transition enables the bridging of the effective optical window to telecommunication wavelengths. Moreover, monolithic integration of arrayed devices with satisfactory device-to-device variability has been encompassed and a proof-of-concept imaging application is demonstrated. On the whole, this study depicts a fascinating functional coupling architecture toward implementing chip-scale integrated optoelectronics.
低光吸收和有限的载流子寿命是阻碍基于二维层状材料(2DLM)的光电探测器性能进一步提升的关键障碍,而可扩展制造是从实验室走向市场实现商业化之前一直面临的挑战。在此,通过脉冲激光沉积实现了晶圆级的SnS/ZIS分级纳米薄膜,其中面外SnS(O-SnS)修饰在面内ZIS(I-ZIS)上。与原始的ZIS器件相比,衍生出的O-SnS/I-ZIS光电探测器表现出显著提高的灵敏度。多种功能的协同作用促成了这种显著的提升,包括O-SnS通过多次散射产生的显著光捕获效应、II型交错能带排列实现的光生电子-空穴对的高效空间分离以及ZIS定制电子结构促成的载流子传输促进。值得注意的是,O-SnS/I-ZIS的独特结构可以显著加快载流子动力学过程,其中O-SnS促进电子从SnS转移到ZIS,而I-ZIS实现高速电子循环。此外,层间跃迁使得有效光学窗口能够桥接到电信波长。而且,已经实现了具有令人满意的器件间一致性的阵列器件的单片集成,并展示了一个概念验证成像应用。总体而言,这项研究描绘了一种朝着实现芯片级集成光电子学的迷人功能耦合架构。