Suppr超能文献

FEAMR:一个用于监测食品和环境相关抗菌药物耐药性的数据库。

FEAMR: A Database for Surveillance of Food and Environment-Associated Antimicrobial Resistance.

机构信息

Antimicrobial Research (AMR) Lab, Department of Biotechnology, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, 400098, Maharashtra, India.

Department of Bioinformatics, Chikitsak Samuha's S.S & L.S Patkar Varde College, Mumbai, 400062, Maharashtra, India.

出版信息

Interdiscip Sci. 2022 Dec;14(4):833-840. doi: 10.1007/s12539-022-00534-y. Epub 2022 Jul 25.

Abstract

The rapid dissemination of antimicrobial resistance (AMR) has emerged as a serious health problem on an unprecedented global scale. AMR is predicted to kill more than 10 million people annually by 2050 leading to huge economic losses worldwide. Therefore, urgent action is required at the national as well as international levels to avert this looming crisis. Effective surveillance can play an important role in the containment of AMR spread by providing data to help determine AMR hotspots, predict an outbreak, maintain proper stewardship and propose immediate and future plans of action in this respect. Although many existing databases provide genetic and molecular information on AMR in microorganisms, there is no dedicated database of AMR from non-clinical samples. The FEAMR database is a one-of-its-kind database to provide manually collated and curated information on the prevalence of AMR in food and the environment. For designing the FEAMR webpage, Microsoft Visual Studio with HTML, CSS, ASP.NET, Bootstrap for the front-end and C# for the back-end were used. The FEAMR database is a free access resource ( https://feamrudbt-amrlab.mu.ac.in/ ), accepting verified food- and environment-related AMR submissions from across the globe. To the best of our knowledge, it is probably the first database providing AMR-related surveillance data from non-clinical samples. It is designed from the 'One Health Approach' perspective to help in the containment of global AMR spread. Flowsheet of steps for making FEAMR database 1. Research articles relating to Antimicrobial Resistance (AMR) were searched on the internet. 2. Data relating to AMR were retrieved from these articles and stored in an MS-Excel sheet. 3. The web pages of the FEAMR database (DB) were created using Microsoft Visual Studio (MVS) and its various tools. HTML, CSS, ASP.NET and Bootstrap were used for the front end and C# used for the back-end of the website. 4. The DB of FEAMR was created using MS SQL Server which was controlled by SQL Server Management Studio (SSMS). 5. The data from the MS-Excel sheet in step 2 was stored in the SQL server and displayed on the web page using GridView tool of MVS and C#. The database created was then uploaded on the University of Mumbai (UoM) website, where it can be accessed by all users having the link to the DB ( https://feamrudbt-amrlab.mu.ac.in/ ).

摘要

抗菌药物耐药性(AMR)的快速传播已经成为一个前所未有的全球性严重健康问题。据预测,到 2050 年,AMR 将导致全球每年超过 1000 万人死亡,造成巨大的经济损失。因此,需要在国家和国际层面采取紧急行动,以避免这场迫在眉睫的危机。有效的监测可以通过提供数据来帮助确定 AMR 热点、预测疫情爆发、保持适当的管理,并提出这方面的即时和未来行动计划,从而在遏制 AMR 传播方面发挥重要作用。虽然许多现有的数据库提供了关于微生物中 AMR 的遗传和分子信息,但没有专门针对非临床样本的 AMR 数据库。FEAMR 数据库是一个独一无二的数据库,提供了关于食品和环境中 AMR 流行情况的手动整理和策划信息。为了设计 FEAMR 网页,使用了 Microsoft Visual Studio 与 HTML、CSS、ASP.NET、前端的 Bootstrap 和后端的 C#。FEAMR 数据库是一个免费访问资源(https://feamrudbt-amrlab.mu.ac.in/),接受来自全球各地经过验证的与食品和环境相关的 AMR 提交。据我们所知,它可能是第一个提供非临床样本中 AMR 相关监测数据的数据库。它是从“同一健康方法”的角度设计的,旨在帮助遏制全球 AMR 的传播。创建 FEAMR 数据库的步骤流程图 1. 在互联网上搜索有关抗菌药物耐药性(AMR)的研究文章。 2. 从这些文章中检索与 AMR 相关的数据,并存储在 MS-Excel 工作表中。 3. 使用 Microsoft Visual Studio (MVS) 及其各种工具创建 FEAMR 数据库(DB)的网页。HTML、CSS、ASP.NET 和 Bootstrap 用于前端,C#用于网站的后端。 4. 使用 SQL Server Management Studio (SSMS) 控制的 MS SQL Server 创建 FEAMR 的 DB。 5. 将步骤 2 中的 MS-Excel 工作表中的数据存储在 SQL 服务器中,并使用 MVS 和 C#的 GridView 工具在网页上显示。然后将创建的数据库上传到孟买大学(UoM)网站,所有拥有数据库链接的用户都可以访问该网站(https://feamrudbt-amrlab.mu.ac.in/)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44ba/9309602/40b026e8279c/12539_2022_534_Fig1_HTML.jpg

相似文献

1
FEAMR: A Database for Surveillance of Food and Environment-Associated Antimicrobial Resistance.
Interdiscip Sci. 2022 Dec;14(4):833-840. doi: 10.1007/s12539-022-00534-y. Epub 2022 Jul 25.
4
Next-Generation Antimicrobial Resistance Surveillance System Based on the Internet-of-Things and Microfluidic Technique.
ACS Sens. 2021 Sep 24;6(9):3477-3484. doi: 10.1021/acssensors.1c01453. Epub 2021 Sep 8.
7
Antimicrobial resistance from a one health perspective in Cameroon: a systematic review and meta-analysis.
BMC Public Health. 2019 Aug 19;19(1):1135. doi: 10.1186/s12889-019-7450-5.
9
Easy Access to Antibiotics; Spread of Antimicrobial Resistance and Implementation of One Health Approach in India.
J Epidemiol Glob Health. 2021 Dec;11(4):444-452. doi: 10.1007/s44197-021-00008-2. Epub 2021 Sep 28.
10
Design & development of customizable web API for interoperability of antimicrobial resistance data.
Sci Rep. 2021 May 27;11(1):11226. doi: 10.1038/s41598-021-90601-z.

引用本文的文献

1
Developing a digital data platform for surveillance of food and water-borne pathogens in North East India: insight for public health advocacy.
Front Public Health. 2024 Aug 26;12:1422373. doi: 10.3389/fpubh.2024.1422373. eCollection 2024.
2
CCIBP: a comprehensive cosmetic ingredients bioinformatics platform.
Bioinformatics. 2023 Jul 1;39(7). doi: 10.1093/bioinformatics/btad416.

本文引用的文献

1
Antimicrobial resistance and COVID-19: Intersections and implications.
Elife. 2021 Feb 16;10:e64139. doi: 10.7554/eLife.64139.
2
Antibiotics and antimicrobial resistance in the COVID-19 era: Perspective from resource-limited settings.
Int J Infect Dis. 2021 Mar;104:250-254. doi: 10.1016/j.ijid.2020.12.087. Epub 2021 Jan 9.
3
Antimicrobial Resistance, Food Safety, and One Health: The Need for Convergence.
Annu Rev Food Sci Technol. 2016;7:287-312. doi: 10.1146/annurev-food-041715-033251. Epub 2016 Jan 14.
4
Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem.
Ther Adv Drug Saf. 2014 Dec;5(6):229-41. doi: 10.1177/2042098614554919.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验