School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, PR China.
College of Mathematics and Computer Science, Yan'an University, Yan'an, 716000, PR China.
J Math Biol. 2022 Jul 25;85(2):15. doi: 10.1007/s00285-022-01782-8.
This study explores the coevolutionary dynamics of host-pathogen interaction based on a susceptible-infected population model with density-dependent mortality. We assume that both the host's resistance and the pathogen's virulence will adaptively evolve, but there are inevitable costs in terms of host birth rate and disease-related mortality rate. Particularly, it is assumed that both the host resistance and pathogen virulence can affect the transmission rate. By using the approach of adaptive dynamics and numerical simulation, we find that the finally coevolutionary outcome depends on the strength of host-pathogen asymmetric interaction, the curvature of trade-off functions, and the intensity of density-dependent natural mortality. To be specific, firstly, we find that if the strengths of host-pathogen asymmetric interaction and disease-related mortality are relatively weak, or the density-dependent natural mortality is relatively strong, then the host resistance and pathogen virulence will evolve to a continuously stable strategy. However, if the strength of host-pathogen asymmetric interaction and disease-related mortality becomes stronger, then the host resistance and pathogen virulence will evolve periodically. Secondly, we find that if the intensities of both the birth rate trade-off function and the density-dependent natural mortality are relatively weak, but the strength of host-pathogen asymmetric interaction becomes relatively strong, then the evolution of host resistance will have a relatively strongly accelerating benefit, the evolutionary branching of host resistance will first arise. However, if the strength of host-pathogen asymmetric interaction is relatively weak, but the intensity of the trade-off function of disease-related mortality becomes relatively strong, then the evolution of pathogen virulence will have a relatively strongly decelerating cost, and the evolutionary branching of pathogen virulence will first arise. Thirdly, after the evolutionary branching of host resistance and pathogen virulence, we further study the coevolutionary dynamics of two-hosts-one-pathogen interaction and one-host-two-pathogens interaction. We find that if the evolutionary branching of host resistance arises firstly, then the finally evolutionary outcome contains a dimorphic host and a monomorphic pathogen population. If the evolutionary branching of pathogen virulence arises firstly, then the finally evolutionary outcome may contain a monomorphic host and a dimorphic pathogen population.
本研究基于具有密度依赖死亡率的易感染人群模型,探讨了宿主-病原体相互作用的协同进化动态。我们假设宿主的抵抗力和病原体的毒力都会自适应地进化,但在出生率和与疾病相关的死亡率方面会产生不可避免的代价。特别是,我们假设宿主的抵抗力和病原体的毒力都会影响传播率。通过使用适应性动态和数值模拟的方法,我们发现最终的协同进化结果取决于宿主-病原体不对称相互作用的强度、权衡函数的曲率和密度依赖自然死亡率的强度。具体来说,首先,如果宿主-病原体不对称相互作用和与疾病相关的死亡率的强度较弱,或者密度依赖的自然死亡率较强,那么宿主的抵抗力和病原体的毒力将进化到一个连续稳定的策略。然而,如果宿主-病原体不对称相互作用和与疾病相关的死亡率的强度变强,那么宿主的抵抗力和病原体的毒力将周期性进化。其次,如果出生率权衡函数和密度依赖自然死亡率的强度都较弱,但宿主-病原体不对称相互作用的强度变强,那么宿主的抵抗力进化将具有较强的加速效益,宿主的抵抗力将首先发生进化分支。然而,如果宿主-病原体不对称相互作用的强度较弱,但与疾病相关的死亡率的权衡函数的强度变强,那么病原体的毒力进化将具有较强的减速成本,病原体的毒力将首先发生进化分支。第三,在宿主的抵抗力和病原体的毒力发生进化分支之后,我们进一步研究了两宿主-一病原体相互作用和一宿主-两病原体相互作用的协同进化动态。我们发现,如果宿主的抵抗力进化分支首先发生,那么最终的进化结果包含一个二态宿主和一个单态病原体种群。如果病原体的毒力进化分支首先发生,那么最终的进化结果可能包含一个单态宿主和一个二态病原体种群。