Suppr超能文献

使用后验预测模拟评估贝叶斯天际图模型的充分性。

Assessing model adequacy for Bayesian Skyline plots using posterior predictive simulation.

机构信息

Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, United States of America.

Museum of Biological Diversity, The Ohio State University, Columbus, OH, United States of America.

出版信息

PLoS One. 2022 Jul 25;17(7):e0269438. doi: 10.1371/journal.pone.0269438. eCollection 2022.

Abstract

Bayesian skyline plots (BSPs) are a useful tool for making inferences about demographic history. For example, researchers typically apply BSPs to test hypotheses regarding how climate changes have influenced intraspecific genetic diversity over time. Like any method, BSP has assumptions that may be violated in some empirical systems (e.g., the absence of population genetic structure), and the naïve analysis of data collected from these systems may lead to spurious results. To address these issues, we introduce P2C2M.Skyline, an R package designed to assess model adequacy for BSPs using posterior predictive simulation. P2C2M.Skyline uses a phylogenetic tree and the log file output from Bayesian Skyline analyses to simulate posterior predictive datasets and then compares this null distribution to statistics calculated from the empirical data to check for model violations. P2C2M.Skyline was able to correctly identify model violations when simulated datasets were generated assuming genetic structure, which is a clear violation of BSP model assumptions. Conversely, P2C2M.Skyline showed low rates of false positives when models were simulated under the BSP model. We also evaluate the P2C2M.Skyline performance in empirical systems, where we detected model violations when DNA sequences from multiple populations were lumped together. P2C2M.Skyline represents a user-friendly and computationally efficient resource for researchers aiming to make inferences from BSP.

摘要

贝叶斯天际线图(BSP)是一种用于推断人口历史的有用工具。例如,研究人员通常应用 BSP 来检验关于气候变化如何随时间影响种内遗传多样性的假设。与任何方法一样,BSP 有一些假设可能在某些经验系统中被违反(例如,没有种群遗传结构),而对从这些系统中收集的数据进行简单的分析可能会导致虚假结果。为了解决这些问题,我们引入了 P2C2M.Skyline,这是一个 R 包,旨在使用后验预测模拟评估 BSP 模型的充分性。P2C2M.Skyline 使用系统发育树和贝叶斯天际线分析的日志文件输出来模拟后验预测数据集,然后将这个零假设分布与从经验数据计算的统计数据进行比较,以检查模型是否违反。当模拟数据集假设存在遗传结构时,P2C2M.Skyline 能够正确识别模型违反情况,这显然违反了 BSP 模型的假设。相反,当根据 BSP 模型模拟模型时,P2C2M.Skyline 显示出低的假阳性率。我们还在经验系统中评估了 P2C2M.Skyline 的性能,在这些系统中,当将多个群体的 DNA 序列合并在一起时,我们检测到了模型违反情况。P2C2M.Skyline 为希望从 BSP 进行推断的研究人员提供了一个用户友好且计算效率高的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06b4/9312427/954e679829a6/pone.0269438.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验