Suppr超能文献

用于推断种群历史的贝叶斯合并天际线图模型的比较

Comparison of Bayesian Coalescent Skyline Plot Models for Inferring Demographic Histories.

作者信息

Billenstein Ronja J, Höhna Sebastian

机构信息

GeoBio-Center, Ludwig-Maximilians-Universität München, Munich 80333, Germany.

Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich 80333, Germany.

出版信息

Mol Biol Evol. 2024 May 3;41(5). doi: 10.1093/molbev/msae073.

Abstract

Bayesian coalescent skyline plot models are widely used to infer demographic histories. The first (non-Bayesian) coalescent skyline plot model assumed a known genealogy as data, while subsequent models and implementations jointly inferred the genealogy and demographic history from sequence data, including heterochronous samples. Overall, there exist multiple different Bayesian coalescent skyline plot models which mainly differ in two key aspects: (i) how changes in population size are modeled through independent or autocorrelated prior distributions, and (ii) how many change-points in the demographic history are used, where they occur and if the number is pre-specified or inferred. The specific impact of each of these choices on the inferred demographic history is not known because of two reasons: first, not all models are implemented in the same software, and second, each model implementation makes specific choices that the biologist cannot influence. To facilitate a detailed evaluation of Bayesian coalescent skyline plot models, we implemented all currently described models in a flexible design into the software RevBayes. Furthermore, we evaluated models and choices on an empirical dataset of horses supplemented by a small simulation study. We find that estimated demographic histories can be grouped broadly into two groups depending on how change-points in the demographic history are specified (either independent of or at coalescent events). Our simulations suggest that models using change-points at coalescent events produce spurious variation near the present, while most models using independent change-points tend to over-smooth the inferred demographic history.

摘要

贝叶斯合并天际线图模型被广泛用于推断种群历史。第一个(非贝叶斯)合并天际线图模型将已知的系统发育树视为数据,而后续的模型和实现则从序列数据(包括不同时间的样本)中联合推断系统发育树和种群历史。总体而言,存在多种不同的贝叶斯合并天际线图模型,它们主要在两个关键方面存在差异:(i)种群大小的变化是如何通过独立或自相关的先验分布进行建模的,以及(ii)在种群历史中使用了多少个变化点、它们出现在哪里,以及变化点的数量是预先指定的还是推断出来的。由于两个原因,这些选择中的每一个对推断出的种群历史的具体影响尚不清楚:首先,并非所有模型都在同一软件中实现;其次,每个模型实现都做出了生物学家无法影响的特定选择。为了便于对贝叶斯合并天际线图模型进行详细评估,我们将目前描述的所有模型以灵活的设计方式实现到了RevBayes软件中。此外,我们在一个马的实证数据集上,并辅以一个小型模拟研究,对模型和选择进行了评估。我们发现,根据种群历史中的变化点是如何指定的(独立于合并事件还是在合并事件处),估计出的种群历史大致可以分为两组。我们的模拟表明,在合并事件处使用变化点的模型在当前附近会产生虚假变化,而大多数使用独立变化点的模型往往会过度平滑推断出的种群历史。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac49/11068272/9afc27d9b07e/msae073f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验