Suppr超能文献

错误分数的因果理论。

A causal theory of error scores.

机构信息

Department of Psychology, University of Amsterdam.

Department of Psychology, University of California, Davis.

出版信息

Psychol Methods. 2024 Aug;29(4):807-826. doi: 10.1037/met0000521. Epub 2022 Jul 25.

Abstract

In modern test theory, response variables are a function of a common latent variable that represents the measured attribute, and error variables that are unique to the response variables. While considerable thought goes into the interpretation of latent variables in these models (e.g., validity research), the interpretation of error variables is typically left implicit (e.g., describing error variables as residuals). Yet, many psychometric assumptions are essentially assumptions about error and thus being able to reason about psychometric models requires the ability to reason about errors. We propose a causal theory of error as a framework that enables researchers to reason about errors in terms of the data-generating mechanism. In this framework, the error variable reflects myriad causes that are specific to an item and, together with the latent variable, determine the scores on that item. We distinguish two types of item-specific causes: characteristic variables that differ between people (e.g., familiarity with words used in the item), and circumstance variables that vary over occasions in which the item is administered (e.g., a distracting noise). We show that different assumptions about these unique causes (a) imply different psychometric models; (b) have different implications for the chance experiment that makes these models probabilistic models; and (c) have different consequences for item bias, local homogeneity, and reliability coefficient α and the test-retest correlation. The ability to reason about the causes that produce error variance puts researchers in a better position to motivate modeling choices. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

在现代测试理论中,反应变量是一个共同潜在变量的函数,该潜在变量表示被测量的属性,而误差变量则是特定于反应变量的。虽然这些模型中对潜在变量的解释投入了相当多的思考(例如,有效性研究),但对误差变量的解释通常是隐含的(例如,将误差变量描述为残差)。然而,许多心理测量学假设本质上是关于误差的假设,因此,能够对心理测量模型进行推理需要能够对误差进行推理。我们提出了一种误差的因果理论作为一个框架,使研究人员能够根据数据生成机制来推理误差。在这个框架中,误差变量反映了特定于项目的无数原因,这些原因与潜在变量一起决定了该项目的得分。我们区分了两种类型的项目特定原因:人与人之间不同的特征变量(例如,对项目中使用的单词的熟悉程度),以及在项目被施测时随时间变化的环境变量(例如,分散注意力的噪音)。我们表明,这些独特原因的不同假设(a)意味着不同的心理测量模型;(b)对使这些模型成为概率模型的机会实验有不同的影响;(c)对项目偏差、局部同质性和可靠性系数α以及测试-重测相关性有不同的影响。能够推理产生误差方差的原因,使研究人员能够更好地为建模选择提供依据。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验