Suppr超能文献

潜变量和类别指标的非随机数据中的因果效应分析:EffectLiteR 的实现和优势。

Causal effect analysis in nonrandomized data with latent variables and categorical indicators: The implementation and benefits of EffectLiteR.

机构信息

Leibniz Institute for Educational Trajectories (LIfBi).

Department of Psychological Methods and Evaluation, Bielefeld University.

出版信息

Psychol Methods. 2024 Apr;29(2):287-307. doi: 10.1037/met0000489. Epub 2022 May 12.

Abstract

Instead of using manifest proxies for a latent outcome or latent covariates in a causal effect analysis, the R package EffectLiteR facilitates a direct integration of latent variables based on structural equation models (SEM). The corresponding framework considers latent interactions and provides various effect estimates for evaluating the differential effectiveness of treatments. In addition, a user-friendly graphical interface customizes the implementation of the complex models. We aim to enable applications of EffectLiteR in more contexts, and therefore generalize the framework for incorporating latent variables measured with categorical indicators. This refers, for instance, to achievement tests in educational large-scale assessments (LSAs), which are typically constructed in the tradition of item response theory (IRT). We review different modeling strategies for incorporating latent variables from IRT models in an effect analysis (i.e., individual score estimates, plausible values, SEM for categorical indicators). The strategies differ in the handling of measurement error and, thus, have different implications for the accuracy and efficiency of causal effect estimates. We describe our extensions of EffectLiteR based on SEM for categorical indicators and illustrate the model specification step-by-step. In addition, we present a hands-on example, where we apply EffectLiteR in LSA data. The practical benefit of using latent variables in comparison to proficiency scores is of special interest in the application and discussion. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

摘要

相反,在因果效应分析中,使用显式代理变量来表示潜在结果或潜在协变量,R 包 EffectLiteR 基于结构方程模型 (SEM) 促进了潜在变量的直接集成。相应的框架考虑了潜在的交互作用,并提供了各种效果估计,以评估治疗方法的差异性效果。此外,用户友好的图形界面可以定制复杂模型的实现。我们旨在使 EffectLiteR 在更多的情况下得到应用,因此推广了该框架,以纳入使用类别指标测量的潜在变量。例如,这涉及到教育大规模评估 (LSA) 中的成就测试,这些测试通常是在项目反应理论 (IRT) 的传统中构建的。我们回顾了在效果分析中纳入 IRT 模型中潜在变量的不同建模策略(即个体分数估计、似然值、类别指标的 SEM)。这些策略在处理测量误差方面存在差异,因此对因果效应估计的准确性和效率有不同的影响。我们描述了基于 SEM 的 EffectLiteR 的扩展,用于类别指标,并逐步说明模型规格。此外,我们还展示了一个实际示例,在这个示例中,我们在 LSA 数据中应用了 EffectLiteR。在应用和讨论中,与熟练分数相比,使用潜在变量的实际优势特别值得关注。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验